
Reducing Knowledge Loss in Open Source Software

Mehvish Rashid

Dublin City University,

Dublin, Ireland.

Lero, the Irish Software

Research Centre, Ireland.

Mehvish.Rashid2@mail.dcu.ie

Paul M. Clarke

Dublin City University,

Dublin, Ireland.

Lero, the Irish Software

Research Centre, Ireland.

 Paul.M.Clarke@dcu.ie

Rory V. O’Connor

Dublin City University,

Dublin, Ireland.

Lero, the Irish Software

Research Centre, Ireland.

 Rory.OConnor@dcu.ie

ABSTRACT

Contributor turnover leads to knowledge loss in OSS

projects. The structure of the OSS community is transient in

nature, yet continual maintenance of OSS projects is

required for their sustainability. Even though knowledge

creation and sharing is abundant, knowledge is not evenly

distributed among contributors. Only a small subset of

contributors called core members make major code

contributions in OSS projects. It is costly for a contributor

to maintain code from other contributors on the project and

to seek out assistance and information required, resulting in

productivity loss. Knowledge retention mechanisms, we

suggest, could be improved in OSS projects. The objective

of our work is to integrate the concept of knowledge

retention in OSS projects. The challenge is how to apply

concepts of knowledge management in such a dynamic

community with a transient workforce.

Author Keywords

Open Source Software; Software Maintenance; Knowledge

Creation; Knowledge Sharing; Knowledge Management;

Knowledge Retention.

ACM Classification Keywords

D.2 [Software Engineering]: Distribution, Maintenance, and

Enhancement, and K.6 [Software Management]: Software

development, and Software Process.

INTRODUCTION
Our topic of research is knowledge loss in Open Source

Software (OSS). A survey in 2015 reported that nearly 66%

of companies incorporate OSS with the commercial

software [18]. The qualities of OSS such as freedom to use,

change, and redistribute [1] with the applicable restrictions

based on the license agreement [19], has made it a critical

element of software industry.

Knowledge loss in OSS projects is not an extensively

explored area but is vital for the sustainability of OSS

projects. After completing the literature review, at this stage

am well prepared to test out my ideas.

Evolution of a FLOSS project, result in dynamic transient

teams of contributors who are constantly joining, leaving,

or changing their role in the project. The phenomenon of

resources joining and leaving is referred to as turnover [6].

Turnover leads to knowledge loss in OSS projects [17]. In

many large OSS projects, a high turnover have been

observed leading to the formation of the succeeding

development teams [17]. In order to continue with the

software development tasks succeeding development teams

require knowledge about the developed source code. The

author of the source code has a strong relationship with the

authored code. When the author of the code leaves the

project and her code is abandoned, software development

can halt due to knowledge loss [16]. Knowledge loss is a

threat to the sustainability of OSS projects.

The objective of this research is to introduce proactive

knowledge exchange mechanisms in the OSS projects for

knowledge retention. Currently the knowledge acquired in

OSS project communities is reactive in nature and through

asynchronous communication such as mailing lists, blogs,

discussion forums, and Internet Relay Chat (IRC). Our

focus is on how to facilitate a more uniform distribution of

knowledge in the OSS projects.

The following section provides details on the literature

relevant to knowledge loss phenomenon. We conclude

literature section with two broad questions followed by the

section relating to the research methodology, which is still

at an infancy stage. The contribution sections lists the

expected outcomes and benefits of this work to the

scientific community.

RELATED LITERATURE

Knowledge in this work is driven from information [3] and

accumulates with individual’s experience, evolving through

communication and inference [21]. Knowledge is classified

into two types, explicit and tacit: explicit knowledge is

formalised and documented while tacit knowledge is based

on interactions [8]. Contributors in OSS can take time to

become productive [22]. The time required to learn the

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish prior

specific permission and/or a fee.

OpenSym 2017, August 23-25, 2017, Galway, Ireland.
© 2017 ACM. ISBN………
DOI string to be included here.

mailto:Mehvish.Rashid2@mail.dcu.ie
mailto:Paul.M.Clarke@dcu.ie
mailto:Rory.OConnor@dcu.ie

Figure 1. Mind map of related literature on OSS knowledge loss [15]

inner workings of the project, when experienced contributor

leaves, causes productivity loss [9]. The structure of the

OSS community is transient in nature with the participating

contributors as volunteers and sometimes as paid

contributors. The volunteers participate in OSS projects to

learn new skills, contribute code and build a reputation

within the OSS community that may benefit them in the

future career opportunities [2]. The development in OSS

continues in independent, self-assigned, and in parallel

streams without much coordination due to geographical

dispersion [11]. Mostly volunteers participate in community

based projects [10].

A small subset of contributors called core members make

major code contributions (80%) [12]. When knowledge

distribution is among a small group of contributors, one

contributor leaving can cause considerable loss of system

files in OSS projects [5]. The code that is abandoned is

argued to increase the numbers of reported defects as well

[14]. The maintenance of abandoned code is difficult

because of knowledge lacking on the code creation and

structure [5, 7].

The resolution to knowledge loss in OSS projects is by

Knowledge Management (KM). Two KM activities such as

knowledge creation and knowledge sharing are evident in

OSS projects. Knowledge creation can be related to the

process of knowledge creation described by the four modes

of knowledge conversion: Socialisation, Externalisation,

Internalisation, and Combination are coined as SECI [13].

Socialization, which is from tacit to tacit knowledge,

Externalization which is from tacit to explicit knowledge,

Combination of explicit to explicit knowledge and

Internalization which is from explicit to tacit knowledge. In

SECI, knowledge is created from socialization among

project members. This knowledge is made explicit or

documented through externalization. This explicit

knowledge is integrated with the existing explicit

knowledge through combination. The explicit knowledge

when acquired by an individual is again converted to tacit

knowledge by internalization.

Knowledge sharing is through technology-mediated

channels where knowledge is stored in code repositories,

projects websites, blogs, bug reporting, and bug tracking

databases, and mailing lists. Gamification [20], social

media sites such as GitHub
1
 for coding, StackExchange

2

and StackOverflow
3
 network, play an important role in OSS

projects [15]. Even though knowledge sharing on the OSS

project is abundant, there is no mechanism to articulate the

undocumented knowledge confined to a person. The

mechanism of enabling and embedding the knowledge in an

organisation is achieved through Knowledge Retention

(KR). KR is essential for the sustainable performance of an

organisation [4].

The above details on the problem of knowledge loss in OSS

projects are captured in a mind map in Figure 1 [15].The

above discussion leads to the formulation of two main

research questions, expected to evolve in the future [15].

The first question will identify the effective KM practices

that can be applied to OSS projects. The challenge will be

adapting the practices to suit the needs of dynamic structure

in OSS communities.

RQ1. Which knowledge management practices enable an

effective knowledge management strategy for OSS

projects?

Once the practices are assessed for their suitability to OSS

communities, the next step will be their integration within

the working structure OSS projects.

RQ2. How to integrate knowledge management practices

with established work practices in OSS projects?

In FLOSS projects, contributors are under no obligation to

notify the project community when they leave. The

mechanisms of knowledge retention in an organisation are

more reactive in nature, triggered when an employee is

1 https://github.com

2 http://stats.stackexchange.com/

3 http://stackoverflow.com

leaving. Conversely, in FLOSS, it is not certain when a

contributor will leave; therefore, a proactive approach to

retain knowledge is required. Further, the main

consideration is to introduce mechanisms that are non-

intrusive and do not cause an overhead that reflects on the

project’s productivity.

In order for the KR process to be operational in FLOSS,

Tacit knowledge, also known as informal knowledge, has to

be converted to explicit knowledge. In the OSS

communities, tacit knowledge is acquired through

socialization on technology-mediated channels. The tacit

knowledge must be converted to explicit knowledge and

integrated into the existing explicit knowledge repository to

minimise knowledge loss in FLOSS. The creation of

knowledge is an ongoing process and therefore the retention

mechanism has to be effective.

RESEARCH METHODOLOGY

OSS projects have an open access to source code, mailing

lists, blogs, discussion forums and bug reporting tools. In

this research the real-time data will be used along with

intensive engagement with OSS projects communities. The

focus will be to improve the mechanism of KR and to

formulate techniques to examine and report on KR health

on OSS projects. The validation will be carried out by

involving OSS communities. The research methodology is

yet to be elaborated but various alternatives are under

consideration at the present time. The milestone of

designing a research methodology is expected to be

complete by the end of October 2017.

CONTRIBUTIONS

The main contributions to the scientific community are:

 The integration of KM processes in OSS projects

leading to the formulation of KR practices in OSS

projects.

 This research focuses on techniques that will

promote a more uniform distribution of

knowledge in OSS communities, further

encouraging a healthy environment for knowledge

exchange.

 If successful in developing a valid technique for

evaluating KR on OSS projects, commercial

organisations might employ such vehicles in order

to assess the health of OSS projects as a mean to

improving OSS selection decisions.

ACKNOWLEDGEMENTS

This work was supported, in part, by Science Foundation

Ireland grant 13/RC/2094 to Lero, the Irish Software

Research Centre (www.lero.ie).

REFERENCES

1. Kevin Crowston, James Howison and Hala Annabi.

2006. Information systems success in free and open

source software development: theory and measures.

Software Process: Improvement and Practice, 11 (2).

123-148. 10.1002/spip.259

2. Kevin Crowston. 2011. Lessons from volunteering and

free/libre open source software development for the

future of work. in Researching the Future in

Information Systems, Springer, 215-229.

3. Thomas H Davenport and Laurence Prusak. 1998.

Working knowledge: How organizations manage what

they know. Harvard Business Press.

4. Quang Minh Doan, Camille Rosenthal-Sabroux and

Michel Grundstein. 2011. A Reference Model for

Knowledge Retention within Small and Medium-sized

Enterprises. In KMIS, 306-311.

5. Samuel M. Donadelli. 2015. The impact of knowledge

loss on software projects: turnover, customer found

defects, and dormant files Software Engineering,

Concordia University, 85.

6. Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C.

Murphy and Jean-Rémy Falleri. 2015. Impact of

developer turnover on quality in open-source software

Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, ACM, Bergamo,

Italy, 829-841.

7. James D. Herbsleb and Audris Mockus. 2003. An

empirical study of speed and communication in

globally distributed software development. IEEE

Transactions on software engineering, 29 (6). 481-494.

8. Chris S. Hutchison. 2001. Personal knowledge, team

knowledge, real knowledge. In EUROCON'2001, 247-

250 vol.241. 10.1109/EURCON.2001.937805

9. Daniel Izquierdo-Cortazar, Gregorio Robles, Francisco

Ortega and Jesus M Gonzalez-Barahona. 2009. Using

software archaeology to measure knowledge loss in

software projects due to developer turnover. In System

Sciences, 2009. HICSS'09. 42nd Hawaii International

Conference on, IEEE, 1-10.

10. Gwendolyn K. Lee and Robert E. Cole. 2003. From a

Firm-Based to a Community-Based Model of

Knowledge Creation: The Case of the Linux Kernel

Development. Organization Science, 14 (6). 633-649.

10.1287/orsc.14.6.633.24866

11. Martin Michlmayr. 2007. Quality Improvement in

Volunteer Free and Open Source Software Projects:

Exploring the Impact of Release Management

University of Cambridge.

12. Audris Mockus, Roy T. Fielding and James Herbsleb.

2000. A case study of open source software

development: the Apache server Proceedings of the

22nd international conference on Software

engineering, ACM, Limerick, Ireland, 263-272.

http://www.lero.ie/

13. Ikujiro Nonaka, Ryoko Toyama and Noboru Konno.

2000. SECI, Ba and Leadership: a Unified Model of

Dynamic Knowledge Creation. Long Range Planning,

33 (1). 5-34. http://dx.doi.org/10.1016/S0024-

6301(99)00115-6

14. Tobias Otte, Robert Moreton and Heinz D Knoell.

2008. Applied quality assurance methods under the

open source development model. In Computer

Software and Applications, 2008. COMPSAC'08. 32nd

Annual IEEE International, 1247-1252.

15. Rashid Mehvish, Paul M.Clarke, Rory V. O'Connor.

2017. Exploring Knowledge Loss in Open Source

Software (OSS) Projects. To appear in: Proceedings of

17th International SPICE Conference (SPICE 2017),

Palma de Mallorca, Spain.

16. Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli and

Audris Mockus. 2016. Quantifying and Mitigating

Turnover-Induced Knowledge Loss: Case Studies of

Chrome and a project at Avaya. In Proceedings of the

2016 International Conference on Software

Engineering, Autrin, Texas.

17. G. Robles and J. M. Gonzalez-Barahona. 2006.

Contributor turnover in libre software projects IFIP

International Federation for Information Processing,

273-286.

18. Black Duck Software. 2015. Seventy-Eight Percent of

Companies Run on Open Source, Yet Many Lack

Formal Policies to Manage Legal, Operational, and

Security Risk. N.p., 2017. Web. 8 June 2017.

19. Chandrasekar Subramaniam, Ravi Sen and Matthew L

Nelson. 2009. Determinants of open source software

project success: A longitudinal study. Decision Support

Systems, 46 (2). 576-585.

20. Bogdan Vasilescu, Alexander Serebrenik, Prem

Devanbu and Vladimir Filkov. 2014. How social Q&A

sites are changing knowledge sharing in open source

software communities Proceedings of the 17th ACM

conference on Computer supported cooperative work

& social computing, ACM, Baltimore, Maryland, USA,

342-354.

21. Michael H. Zack. 1999. Managing Codified

Knowledge. Sloan Management Review, 40 (4). 45-58.

22. Minghui Zhou and Audris Mockus. 2010. Developer

fluency: achieving true mastery in software projects

Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software

engineering, ACM, Santa Fe, New Mexico, USA, 137-

146.

http://dx.doi.org/10.1016/S0024-6301(99)00115-6
http://dx.doi.org/10.1016/S0024-6301(99)00115-6

