

The Lives and Deaths of Open Source Code Forges
 Megan Squire

Elon University
Elon, North Carolina, USA

msquire@elon.edu

ABSTRACT
Code forges are third party software repositories that also
provide various tools and facilities for distributed software
development teams to use, including source code control
systems, mailing lists and communication forums, bug
tracking systems, web hosting space, and so on. The main
contributions of this paper are to present some new data sets
relating to the technology adoption lifecycles of a group of
six free, libre, and open source software (FLOSS) code
forges, and to compare the lifecycles of the forges to each
other and to the model presented by classical Diffusion of
Innovation (DoI) theory. We find that the observed
adoption patterns of code forges rarely follow the DoI
model, especially as larger code forges are beset by spam
and abuse. The only forge exhibiting a DoI-like lifecycle
was a smaller, community-managed, special-purpose forge
whose demise was planned in advance. The results of this
study will be useful in explaining adoption trajectories, both
to practitioners building collaborative FLOSS ecosystems
and to researchers who study the evolution and adoption of
socio-technical systems.

Author Keywords
Open source; free software; FLOSS; code forge; diffusion
of innovations; technology adoption; RubyForge; Google
Code; SourceForge; ObjectWeb; CodePlex; GitHub;
software evolution

ACM Classification Keywords
D.2.9. SOFTWARE ENGINEERING: Management; H.3.5
INFORMATION STORAGE AND RETRIEVAL: Online
Information Services; Data sharing.

INTRODUCTION
Because teams of developers of free, libre, and open source
software (FLOSS) projects are often geographically
distributed around the world, many teams choose to
structure their work in an asynchronous, location-neutral
way. Early web-based FLOSS hosting services, such as
SourceForge and GNU Savannah, offered features such as

file downloads, version control systems, mailing list
software, wikis, bug tracking software, and so on. In the
early years of the FLOSS phenomenon, these code forges
served an important role for developers by providing a low
barrier to entry to coordinate team work, and they served
end-users by providing a centralized place to find and
communicate about a variety of different FLOSS projects.

By the mid-2000s, larger software companies began to
create their own software forges, such as Google Code and
Microsoft CodePlex. Non-commercial special-purpose
forges were also created during this time frame, for
example RubyForge was designed for projects written in a
particular programming language (Ruby) and the
ObjectWeb forge was designed for FLOSS middleware
projects. GitHub was launched in 2008 to offer version
control and some basic features such as wikis and file
downloads, and is now by far the largest centralized
software forge with over 21 million user accounts and 57
million repositories as of this writing. [1]

Though their intended audiences may differ, and the
services provided by each code forge may be slightly
different, the purpose of all FLOSS code forges is to host
projects. Each time a project owner "chooses" to host their
particular project on a code forge, this action is an
indication that the code forge is still relevant in some way.
Some of the oldest forges are still accepting new projects,
while others have closed, merged, or otherwise transformed
themselves as the FLOSS phenomenon has changed and
matured. What do the project hosting rates look like in the
years between a code forge's birth and its death? Do the
code forges follow the same adoption or "diffusion"
patterns found in other technologies, as project owners
choose to adopt the technology or move to something else?

For this paper, we compare longitudinal data from six code
forges to a "typical" technology adoption curve as presented
in classical Diffusion of Innovation (DoI) theory. Basic
models for technology diffusion were first described by
Everett Rogers [2], who proposed a life cycle consisting of
early adoption, adoption by the majority, then late adoption
("laggards"), and ultimately either discontinuance of the
product or a saturated market. He applied this model to a
variety of technologies in a variety of industries, refining
the model to show that diffusion could be affected by many
factors including social interactions and organizational
dynamics. With time plotted on the x-axis and adoption of
an innovation shown on the y-axis, Rogers proposed that
the typical diffusion of an innovation over time will likely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions
@acm.org.
OpenSym '17, August 23–25, 2017, Galway, Ireland
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5187-4/17/08…$15.00
https://doi.org/10.1145/3125433.3125468

resemble a normal distribution (or an S-curve if plotted
with a cumulative x-axis). Figure 1 shows the two "typical"
DoI technology adoption curves.

Figure 1. "Typical" Diffusion of Innovations (DoI) curves with

periods of maximum growth shown (after Rogers, 1964).

In assessing the adoption or lifecycle of a technology, the
steepness or shallowness of the S-curve is interesting, as is
the point at which the innovation declines following a
period of maximum adoption. By studying the adoption
curves, we may find that some code forges may reach their
peak (maximum adoption) earlier or later than expected.
Some forges may be kept alive well past their expected
lifespan. For code forges that are not dead yet, a partial
adoption curve may exhibit clues for what is to come.

Thus, this paper begins a data-driven, historical analysis of
the diffusion/adoption curves of code forges. We study six
in detail: RubyForge, Google Code, SourceForge,
CodePlex, ObjectWeb, and GitHub. Our questions are:

• RQ1: What do the adoption curves for each code
forge look like?

• RQ2: What factors, if any, alter the curves or
affect the adoption patterns between the forges?

• RQ3: Do all code forges exhibit the same patterns
of birth, growth, and death as would be expected
from traditional DoI theory?

To answer RQ1, for each of six code forges, we gather
metrics to describe its adoption rate and we plot the
adoption rate graphically. For RQ2, we outline the various
details (e.g. abuse of the system) that may explain the
shapes of the curves. To answer RQ3, we compare the
shape of these curves to what DoI theory would predict and
discuss the possible reasons for any differences. Finally, we
explore the limitations of this work and present ideas for
how to advance this work in the future.

TECHNOLOGY ADOPTION DATA
FLOSSmole [3] data is used in this paper to describe the
adoption rates - via new project registrations - of
RubyForge, Google Code, CodePlex, and ObjectWeb.
FLOSSmole was created in 2004 as a source for research-
quality data about how free, libre, and open source software
is constructed. SourceForge Research Data Archive
(SRDA) [4] data is used to describe the lifecycle of
SourceForge. SRDA was created in 2003 as a repository of
data about projects hosted on the SourceForge system.

GHTorrent data [5] is used to describe the lifecycle of
GitHub. GHTorrent was created in 2013 as a source of data
about projects hosted on Github. For each of the five forges
in this study, our data, queries, and calculations are
available for download in the FLOSSmole data repository,
at http://flossdata.syr.edu/data/forgeStudies/2017deathOf
Forges.

RubyForge
RubyForge was launched on July 16, 2003 as a Ruby
language-specific hosting site for FLOSS projects. It
included collaboration tools such as file downloads, source
code control software, bug tracking, and mailing lists.
Project-level metadata collected from the 10 years of
RubyForge's existence was gathered and described in our
prior work [6]. Examples of project-level metadata we
collected for RubyForge includes: project name, project
owners/developers, project description, project license,
project registration date, and so on.

Figure 2 shows a visualization of the RubyForge monthly
new project registrations found in the [6] data set,
beginning with its launch in 2003 through its shutdown in
2014. The dates of two important events in RubyForge's
history are overlaid on the graph: the launch of GitHub's
gem builder in 2008, and the 2009 launch of Gemcutter
(eventually renamed RubyGems). GitHub was a significant
competitor to RubyForge, and Gemcutter/RubyGems was
specifically designed by the RubyForge team to be a
replacement for RubyForge. As the graph shows, the most
intense growth at RubyForge occurred between 2006-2009.

Figure 2. Monthly new project registrations on RubyForge,

2003-2013, with key dates shown

Figure 3. Cumulative monthly new project registrations on

RubyForge, 2003-2013, with month of maximum growth
shown (January 2008)

Figure 3 shows the same data, but with monthly
contributions comprising a cumulative total. This graph
shows that RubyForge began its decline at 52% saturation
of the "market". Following the launch of a competitive site
(GitHub) and its own planned replacement
(Gemcutter/RubyGems), RubyForge began a slow decline.
RubyForge was eventually closed to new projects at the end
of 2013, and shuttered for good in May of 2014, having
hosted a total of 9,898 projects over its lifetime.

Google Code
Google Code (http://code.google.com) was launched in
2006 as a free-of-charge hosting site for any software
project using an OSI-approved FLOSS license. The site
offered basic hosting services, including wikis, source code
control software, bug tracking services, and file downloads.
FLOSSmole began collecting project-level metadata from
Google Code in 2010, and continued to collect this data
through the closure of Google Code in 2015.

Unlike RubyForge, project creation dates were never
published on Google Code's public site as part of the
project-level metadata. However, on June 25, 2015 Google
Code donated to FLOSSmole a list of projects and their
creation dates [7]. Unfortunately, this data reveals that the
registration date field was first added to the Google Code
system on February 4, 2011, so only projects created in
Google Code system after that date have a recorded
registration date. Thus, we will only be able to show the
rate of new project registrations for 2011-2015, or only the
latter half of the Google Code lifespan.

Figure 4. Monthly new project registrations on Google Code,

2011-2015

Figure 4 illustrates the rate of new projects being added to
Google Code from February 2011 through its closure in
March 2015. Monthly new project registration counts
appear to have been fairly steady between 2011 and the
beginning of 2014, with about 15,000-25,000 new projects
created per month. However, in May 2014, a startling
48,000 new projects were created. It seems that someone
was using automated project creation scripts ("bots") to
create fake projects ("spam") on Google Code for the
purpose of search engine optimization (SEO). The File
Downloads feature in Google Code had been similarly
abused by malware and illegal file distributors a year before
[8], resulting in that feature being removed entirely for all
users. As Figure 4 shows, in the months following the May
2014 spam deluge, anti-spam measures were put in place,

but new project creations never again reached their pre-
deluge levels. Nonetheless, on March 12, 2015 Chris
DiBona announced [9] that the code forge would shut down
completely. He explained,

"As developers migrated away from Google Code [to
GitHub], a growing share of the remaining projects were
[sic] spam or abuse. Lately, the administrative load has
consisted almost exclusively of abuse management."

DiBona directly blames the demise of Google Code on both
the spam/abuse problem and the existence of competitive
services such as GitHub.

CodePlex
Microsoft created CodePlex (http://codeplex.com) in 2006
as an open source project hosting facility. It offered several
flavors of source code control software, as well as
discussion forums, issue tracking, and the like. CodePlex
was one of the only code forges to support Microsoft's
Team Foundation Server product, which made it a popular
choice for developers using TFS-friendly platforms,
including Visual Studio. In 2015 many of Microsoft's own
developers began hosting their projects on GitHub [10], and
in 2017 the company announced that CodePlex would be
closed [11].

At the time of the shutdown announcement, we were able to
collect the CodePlex home page and "Change History"
pages for 108,619 projects and donate these to FLOSSmole.
To estimate the registration dates for these projects we used
the Change History page to extract the month and year
when the first change was made (month and year are
shown, but specific dates are not).

Next, we were wondering whether CodePlex suffered from
the same "spam" problem as Google Code. In order to
distinguish between spam and legitimate projects, we used
the number of all-time downloads as a proxy: projects with
no files ever posted, or projects with an all-time count of
zero for their last download, are likely spam or test projects.

Figure 5. Monthly new project registrations on CodePlex,

2006-2017

Figure 5 shows the project creation rates over time for all
projects, and the count of likely non-spam projects overlaid.
We had to remove the months' worth of "all projects" data
points from the chart (November 2014-January 2015,
shown in white on the chart) because the project numbers

were so high as to make the chart completely unreadable. In
December 2014, for example, 47,945 projects were created.
This is more than 130 times the number of projects that
were created in a normal month in 2014. After a two-month
break in February and March 2015, April 2015 once again
shows a spike in zero-download projects, but this time the
surge was only about 3 times greater than surrounding
months.

Figure 6. Cumulative monthly new project registrations (only

"likely non-spam") on CodePlex, 2006-2017, with month of
maximum growth shown (April 2011)

We can also view the non-spam new project registrations
on a cumulative basis, as shown in Figure 6: how much
does each month contribute to the cumulative total of new
projects created? Once we have calculated the cumulative
contribution of each month to the total, we can attempt to
find the last month of growth before the subsequent decline.
Figure 6 shows that CodePlex reached its month of
maximum growth at about 45% saturation, with steady
growth of about 250 likely non-spam projects per month
between 2009-2013. The site had a two-year ramp up, but a
four-year decline.

SourceForge
SourceForge (http://sourceforge.net) was started in
November 1999 as a hosting facility for FLOSS projects.
Unlike CodePlex, Google Code, and RubyForge, the site is
still in operation as of this writing. SourceForge still offers
file downloads, source code control software, mailing lists,
discussion forums, wikis, and so on. As with CodePlex and
Google Code, SourceForge also allows new project creation
by way of a web form, and thus - without taking additional
measures - is vulnerable to being hijacked by spam project
creation bots.

In 2003 SRDA began publishing a version of the data for
researchers [4], but the last time SourceForge donated their
data to the SRDA team was in September of 2014 [12].
Thus, in this study, we will only be able to show the rate of
monthly new project registrations through September 2014.
An additional wrinkle is that it is much more difficult to
find spam projects on SourceForge using the downloads
metric, as we did with CodePlex, due to inconsistencies in
the way data was donated to SRDA over the years [13], and

the lamentable fact that there seems to be no accurate
mechanism for querying downloads after 2009. Therefore,
we differentiate between all projects and and likely non-
spam projects using the amount of text in the description
field, since legitimate projects will include a description,
even if it is short. Figure 7 shows the count of monthly new
project creations starting in 2000, with counts for all
projects and the subset of likely non-spam projects shown
overlaid.

Figure 7. Monthly new project registrations on SourceForge,

2000-2014

Figure 8. Cumulative monthly new project registrations (only
"likely non-spam") on SourceForge, 2000-2014, with month of

maximum growth shown (January 2011)

Figure 8 shows the rate of new non-spam project creation
on a cumulative basis, with January 2011, the month of
highest growth, circled. Recall from Figure 6 that early-
2011 was the same time that CodePlex peaked as well.

For the period 2000-2014, SourceForge seems to follow the
S-curve birth-growth-decline adoption pattern we saw with
RubyForge and CodePlex, but with the added wrinkle of a
large amount of spamming, just as we saw with CodePlex
and Google Code. Another interesting feature of the
SourceForge adoption curve is that there were two periods
of growth: the first in 2006-2008, and the second, higher
period in 2010-2011. After 2011, we see continued growth
in the All Projects, but decidedly less growth in the Likely
Non-Spam projects. In mid-2013, SourceForge began
bundling adware with project downloads [14], an unpopular
business decision that may have caused further declines in
legitimate, non-spam new project registrations. Again, the
SRDA data set only goes through September of 2014, so

subsequent activity, including after the company was sold
yet again in 2016, cannot be shown.

ObjectWeb/OW2
ObjectWeb was begun in 2002 as a community for FLOSS
middleware component projects. In 2006 it merged with
Orientware community and became OW2. Throughout this
time period, ObjectWeb/OW2 has hosted a code forge
(http://forge.ow2.org/). Compared to the other code forges
in this study, ObjectWeb is quite small. Owing to its very
specific niche in only hosting FLOSS middleware, in its 15
years of existence ObjectWeb has hosted fewer than 300
projects. Like RubyForge, the ObjectWeb forge uses a
version of GForge, a fork of SourceForge's original forge
management software. Thus, as with RubyForge and
SourceForge (but unlike Google Code and CodePlex),
every project's registration date is available as a default
piece of metadata. Figure 9 shows the new projects added
over time. Note that these are grouped on a quarterly basis
rather than monthly because the numbers were so small.

Figure 9. Quarterly new project registrations on ObjectWeb,

2002-2016.

Figure 10. Cumulative quarterly new project registrations on

ObjectWeb, 2002-2016, with quarter of maximum growth
shown (Q4 2003)

Figure 10 shows the cumulative growth of new project
registrations for each quarter. ObjectWeb had its maximum
highest quarter early: at the 30% mark. The site registered
15 new projects in 4Q 2003, but since then, no quarter has
yielded more than 10 projects. As of this writing, 7 of the
last 12 quarters have had zero new projects added.

GitHub
GitHub (http://github.com) was launched in 2008 as a free-
of-charge source code control repository and project

hosting facility. The site offers users the ability to create
code repositories, which can be copied, or forked, by other
users, whose changes can be optionally integrated back into
the main code body by way of a pull request. The site also
offers wikis, issue tracking, code snippets (called gists), and
documentation hosting.

The fact that GitHub has no license requirement for
software hosted there (i.e. there is no FLOSS license
requirement) means it is not strictly limited to hosting
FLOSS projects. In fact, GitHub does not limit itself to
hosting software at all. For an apples-to-apples comparison
then, this may mean that GitHub adoption patterns cannot
be compared to adoption patterns of the other five forges,
all of which were strictly supposed to host FLOSS projects.
Nonetheless, with 57 million projects, and both Google
Code and CodePlex sending their users to GitHub after
those forges closed, to not include GitHub in this
comparison would be an oversight.

Calculating new project registrations on GitHub is a bit
different than doing so on the other code forges. First,
GitHub is built around the idea of a fork, or a copy of an
existing project. When a fork is created, should we count it
as a new project or not? Figure 11 shows the rate of new
project creation on GitHub, with all new project
registrations shown on top, and the non-forked projects
shown overlaid on the bottom. The data for this chart came
from the GHTorrent [5] January 2017 data set.

Figure 11. Monthly new project registrations on GitHub,

2008-2016

Figure 12. Cumulative monthly new project registrations

(non-forks) on GitHub, 2008-2017, with month of maximum
growth shown (November 2016).

There are two particularly interesting parts of Figure 11: the
spike in new project registrations (both including forks and
not including forks) during the first half of 2015, and a
subsequent very large spike across most of 2016 in All
Projects and to a lesser extent in the Non-Forks. Both
spikes are immediately followed by steep declines in the
numbers of new registrations.

Figure 12 (previous page) shows the cumulative adoption of
GitHub as a code forge, over time. Because GitHub is still
accepting new projects, and has not yet shown a prolonged
decline in new project registrations, its cumulative curve is
decidedly less S-shaped than the other projects in this study.

DISCUSSION
RubyForge, Google Code, CodePlex, SourceForge,
ObjectWeb and GitHub show very different lifecycle
curves. The prior sections helped us begin to answer RQ1
and RQ2: What do the adoption/diffusion curves for each
code forge look like? And what factors, if any, alter the
curves or affect the adoption/diffusion rates? In this
section, we begin to answer RQ3: Do all code forges
exhibit the same patterns of birth, growth, and death as
would be expected from traditional DoI theory? Here we
summarize our findings of what the key differences are
between the diffusion patterns exhibited by these different
code forges and we compare them to the "typical" DoI
adoption pattern.

Maximum Growth Points: Early Versus Late
Comparing the cumulative S-curves (Figures 3, 6, 8, 10,
and 12) reveals that the different forges reached their period
of maximum growth at different times in their life cycles.
SourceForge reached its maximum growth month when
75% of projects were already created. This indicates a slow
rise and rapid descent. Compare this to RubyForge, which
reached maximum growth at 52%, close to the "expected"
S-curve from DoI theory. CodePlex reached its maximum
with a saturation of 45% of the total projects, indicating a
slightly quicker rise and longer descent than RubyForge.
ObjectWeb reached its maximum quite early in its life, at
32% saturation, and has been in a very slow decline since.

But because we lack newer data for SourceForge, and since
ObjectWeb, SourceForge, and GitHub are still alive (i.e.
they are still accepting new projects), we will find that the
shape of their curves continues to change as time goes on.
SourceForge exhibited a "second wind" of sorts in 2011,
and (in theory) could again show fluctuations. Certainly this
will be the case for GitHub too, since it is still alive and it
only recently had its highest-growth month ever.
ObjectWeb is the smallest forge in the study, and it has a
very specific, niche mission, so its early rise may simply be
an indication that its market was small enough to be easily
and quickly saturated.

Spam Spikes: Larger Forges Versus Smaller Forges
When comparing the adoption curves, especially for the
larger forges (SourceForge, CodePlex, Google Code), the

spikes created by periodic spam attacks are impossible to
ignore. These large, general-purpose forges with automated
signups all experienced significant spam problems,
particularly in the post-2012 time frame. For CodePlex and
Google Code, 2014 and 2015 seem to have been
particularly bad years. We do not have SourceForge data
after 2014, so we cannot say whether the problem continued
there as well. However, we do see that RubyForge and
ObjectWeb never seemed to experience a spam problem,
probably owing to their smaller size. In a small, niche
community of only a few hundred or few thousand projects,
it would be easy to spot an influx of spam projects.

The Tail: Slow Demise Versus Premature Death
Of the six code forges, Google Code and CodePlex are
interesting in that their owners "pulled the plug" following a
spam problem. Even with our limited data, Google Code
appears to have done so rather abruptly, as it was still
attracting many thousands of legitimate projects on a
monthly basis. In contrast, our data shows that CodePlex
was already very much in decline when Microsoft pulled its
plug. It does seem to be the case that the forges with the
larger parent companies (Google, Microsoft), where FLOSS
is not part of the core business mission, were far less
willing to prop up a service that was attracting spam.
SourceForge, on the other hand, is still accepting new
projects, despite similar spam and abuse woes.

After Death: Diversity Versus Monoculture
GitHub is without question the leading code forge at this
time, regularly adding more projects per month than any
other forge attracted in its entire lifespan. So it is no
surprise that when Google Code and CodePlex died, they
both provided migration scripts for existing projects to
move themselves to GitHub. SourceForge also provided
import routines so that Google Code and CodePlex projects
to move to its servers, however neither Google Code nor
CodePlex offered a SourceForge migration or export tool in
return.

The size of GitHub is astounding – with or without the
addition of projects from competitor forges – and the
impact of such a monoculture on FLOSS practices could be
significant. Some of our prior work has addressed the
concern that increasing numbers of projects may be hosted
on a FLOSS forge but remain unlicensed (or do not
specifically choose a FLOSS license) [6]. GitHub itself
estimated in 2015 that 82% of its projects are still
unlicensed [15] despite their creation of remediation tools
such as ChooseALicense.com [16] in 2013. If GitHub is the
most popular place to host a project, and its culture is one
of apathy towards licenses, it is unclear how this could
affect FLOSS in the long-term.

LIMITATIONS AND FUTURE WORK
We began this work by introducing a DoI-based
methodology for graphing technology adoption rates. We
estimated code forge adoption by using monthly (or
quarterly) new project registrations. Limitations of this

methodology include only having six forges in the study,
and having incomplete data for some of the forges (i.e.
Google Code lacks project registration dates before
February 2011, and SourceForge data is unavailable after
September 2014). Future work could address the small
number of forges in the study by identifying other code
forges which make project registration data available,
including Tigris, Launchpad, and so on. Another limitation
of using DoI methods to measure code forge adoption is the
very high number of illegitimate projects hosted on some
forges. The inclusion of spam projects obscures the true
adoption rate, so it is very important to accurately identify
spam projects. Future work could include improving our
spam detection methods for SourceForge and CodePlex,
and designing a method to separate spam from non-spam
projects on Google Code.

Another idea for future work would be to identify the
Google Code and CodePlex projects that did end up moving
to GitHub. This would allow us to see the impact that their
closures had on GitHub's numbers, if any. In addition, as
GitHub matures, it should remain an active place for future
study of code forge adoption patterns. When will GitHub
truly begin to experience a decline in new adoptions? How
long will its eventual demise take and what will it look
like? Will GitHub experience a deluge of spam or abuse of
the same magnitude as other large forges experienced?

CONCLUSIONS
This paper attempts to begin a historical study of the
lifecycles – birth, growth, and sometimes death – of FLOSS
code forges. We describe the growth of a forge by tracking
how many new projects were added to the forge over time.
We compare the growth curves for six code forges
(RubyForge, Google Code, CodePlex, SourceForge,
ObjectWeb, and GitHub) to the "typical" or expected
normal distribution for technology adoption as presented in
classical Diffusion of Innovation (DoI) theory. We find that
each code forge presents a different adoption pattern, for
different reasons.

• RubyForge is closest to the typical technology
adoption curve presented by DoI theory.
RubyForge shows growth following a classic bell
shape, with a maximum growth period very close
to the expected 50% mark. RubyForge was also
the only forge in our study to be replaced by a
newer product that was created by the same
community.

• CodePlex was the next-closest in matching an
expected DoI adoption curve, but with a slightly
sharper rise and slightly slower demise. It
experienced significant periods of spam and abuse
near the end of its life.

• SourceForge had a slow birth, a period of growth
followed by a "second wind," and then a rapid
decline. Like some of the other large forges, it has
also experienced significant spam and abuse at

different periods in its history. It is the only forge
to have been owned by multiple parent companies
during its lifespan. But, with an incomplete data
set and an ongoing lifespan, further study is
needed to see how spam, ownership changes, and
the like will affect its long-term adoption patterns.

• ObjectWeb had a very fast birth and growth, and a
much slower decline. This forge is extremely small
and is still living, so it is harder to draw
conclusions.

• The Google Code adoption curve looks nothing
like the others, mostly because we are missing data
for the first five years of its life. We have no
information about what the early adoption rates
looked like on Google Code, and the remaining
four years were marked by spam spikes followed
by a very sudden termination of its life.

• GitHub is obviously still in the middle of its
growth, but its early rise follows the same shape as
many of the other forges. The question is whether
it has reached a peak or whether it is still rising.

Diffusion of Innovation (DoI) models provide a simple
explanation for how technological innovations are adopted
over time. In this study, we track the adoption patterns of
six different FLOSS code forges and find that while a few
of them did indeed follow the classic DoI growth model,
outside factors such as spam and abuse can prematurely
hasten the death of a code forge or change its growth
trajectory. In addition, the size of a forge, its ownership
status or whether it is community-managed, and its relative
age may also play a part in determining how the forge
grows and changes over time.

ACKNOWLEDGEMENTS

We gratefully acknowledge the U.S. National Science
Foundation (NSF-14-05643) for helping to support this
work.

REFERENCES
1. GitHub. About. 2017. Retrieved April 18, 2017 from

http://github.com/about
2. Everett Rogers. 2003. Diffusion of Innovations, 5th

Edition. Simon & Shuster.
3. James Howison, Megan Conklin, Kevin Crowston.

2006. FLOSSmole: A collaborative repository for
FLOSS research data and analyses. Int. J. Info. Tech.
and Web Engr 1, 3: 17-26.

4. Yongqin Gao, Matthew Van Antwerp, Scott Christley,
Gregory Madey. 2007. A Research Collaboratory for
Open Source Software Research. In Proc of the Int
Workshop on Emerging Trends in FLOSS Research
and Dev. (FLOSS 2007).

5. Georgios Gousios. 2013. The GHTorrent Dataset and
Tool Suite. Proc. of the 10th Int. Conf. on Mining
Software Repositories. (MSR 2013). 233-236.

6. Megan Squire. 2016. Data Sets: The Circle of Life in
Ruby Hosting, 2003-2015. Proc of the 13th Int. Conf.
on Mining Software Repositories. (MSR 2016). 452-
455.

7. FLOSSmole's Google Code data,
http://flossdata.syr.edu/data/gc/2017.

8. Google Project Hosting. 2013. A Change to Google
Code Download Service. Google Open Source Blog.
May 20. Retrieved April 18, 2017 from https://open
source.googleblog.com/2013/05/a-change-to-google-
code-download-service.html

9. Chris DiBona. 2015. Bidding farewell to Google Code.
Google Open Source Blog. March 12. Retrieved April
18, 2017 from https://opensource.googleblog.com/
2015/03/farewell-to-google-code.html

10. Kasey Uhlenhuth. 2015. We're Moving to GitHub! C#
Frequently Asked Questions Blog. January 10.
Retrieved April 19, 2017 from
https://blogs.msdn.microsoft.com/csharpfaq/2015/01/1
0/were-moving-to-github/

11. Brian Harry. 2017. Shutting Down CodePlex. Brian
Harry's Blog. March 31. Retrieved April 18, 2017 from

https://blogs.msdn.microsoft.com/bharry/2017/03/31/sh
utting-down-codeplex/

12. SourceForge Research Data Archive Wiki. All Tables.
Retrieved April 18, 2017 from http://srda.cse.nd.edu/
mediawiki/index.php/All_tables

13. SourceForge Research Data Archive Wiki. Finding
Data, Downloads. Retrieved April 20, 2017 from
http://srda.cse.nd.edu/mediawiki/index.php/Finding_da
ta

14. Roberto Gallopini. 2013. Today We Offer DevShare
(Beta), A Sustainable Way To Fund Open Source
Software. SourceForge Blog. July 1. Retrieved April
18, 2017 from https://sourceforge.net/blog/today-we-
offer-devshare-beta-a-sustainable-way-to-fund-open-
source-software/l

15. Ben Balter. 2015. Open source license usage on
GitHub.com. GitHub Blog. March 9. Retrieved April
20, 2017 from https://github.com/blog/1964-open-
source-license-usage-on-github-com

16. GitHub Choose-A-License Service,
https://choosealicense.com/

