Brazilian Public Software Portal: an integrated platform for
collaborative development

Paulo Meirelles
Faculty Gama (FGA)
University of Brasilia

Gama, Brazil
paulormm@unb.br

Rodrigo Siqueira
FLOSS Competence Center
University of Sdo Paulo
Sao Paulo, Brazil
siqueira@ime.usp.br

ABSTRACT

The Brazilian Public Software (SPB) is a program promoted
by the Brazilian Federal Government to foster sharing and
collaboration on Free/Libre/Open Source Software (FLOSS)
solutions for the public administration. In this context, a public
software is considered a public good and the Federal Govern-
ment assumes some responsibilities related to its use. Once its
devolpment principles is the same of the FLOSS projects, we
have designed the SPB Portal, a platform based on the integra-
tion and evolution of existing FLOSS tools. It provides several
modern features for software collaborative development, help-
ing the Brazilian public administration in sharing its solutions.
In this paper, we present this integrated software development
platform that was developed for the SPB program by a het-
erogeneous team composed by professors, master students
and undergraduate students, as well as by professionals from
FLOSS communities. The development of this platform used
several FLOSS projects, providing a non-trivial integration
among them. This effort has also produced several new fea-
tures that were contributed back to these projects. Alongside
the architectural challenges, we also discuss in this paper our
work process, based on agile and free software development
practices, and the lessons learned during 30 months of work
on the SPB project.

ACM Classification Keywords
K.6.1 Project and People Management: Systems development

Author Keywords
Free Software, Software Integration, Management Team.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

OpenSym ’17, August 23-25, 2017, Galway, Ireland

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5187-4/17/08. .. $15.00

DOI: https://doi.org/10.1145/3125433.3125471

Melissa Wen
FLOSS Competence Center
University of Sdo Paulo
Séo Paulo, Brazil
melissa.srw @gmail.com

Lucas Kanashiro
FLOSS Competence Center
University of Sdo Paulo
Sao Paulo, Brazil
lkd@ime.usp.br

Antonio Terceiro
Colivre
Salvador, Brazil
terceiro@colivre.coop.br

Hilmer Neri
Faculty Gama (FGA)
University of Brasilia

Gama, Brazil

hilmer @unb.br

INTRODUCTION

In the year 2000, the Brazilian Government released the
Eletronic Government program (eGov) aiming at democra-
tizing information access and improving the quality of pub-
lic provision of service and information. In 2003, the Fed-
eral Government created a committee for implementation of
Free/Libre/Open Source Software (FLOSS)! and thereafter
a circular-letter was sent to all Ministries in which the rec-
ommendation to adopt FLOSS became a public policy. In
2007, the Brazilian Public Software Portal (Portal do Software
Piblico Brasileiro, in Portuguese) was released with the goal
of sharing FLOSS projects developed by, or for, the Brazilian
Government. Additionally, the Brazilian legal instrument on
software contracting (known as IN 04/2012) mandates that
public agents must prioritize solutions available on the SPB
Portal. The acquisition of a proprietary solution must be ex-
plicitly justified by demonstrating that there is no suitable
alternative on the SPB Portal. In 2013, the Brazilian Federal
Court issued a ruling (Acdrddo 2314/2013) about contracts
between the public administration and suppliers using agile
methodologies in software development.

Despite of these legal advancements, in practice, Brazilian
government agents still do not practice, or even understand,
collaborative and empirical software development methods,
such as FLOSS or agile methodologies. Thus, hierarchical and
traditional processes and the lack of expertise of public agents
in real-world software development produce inefficiency in
software development contracts, besides unjustifiable expend-
ing of taxpayers money. For instance, since 2009 the SPB
Portal has had several technical issues. The original codebase
development has stopped. The system was a modified version
of an existing FLOSS platform called OpenACS?, and the old
SPB Portal did not receive updates from OpenACS releases. In
this scenario, the portal maintenance has become increasingly
difficult.

IFree Software, Open Source, or Free/Open Source Software.
2http ://openacs.org

https://doi.org/10.1145/3125433.3125471
http://openacs.org

Approximately five years later from the first problems, a new
platform for the SPB Portal was planned and funded. Between
January 2014 and June 2016, the University of Brasilia (UnB)
and the University of Sao Paulo (USP) in a partnership with
the Brazilian Ministry of Planning, Budget, and Management
designed an integrated platform for collaborative software
development [1], including social networking, mailing lists,
version control system, and source code quality monitoring.
To coordinate and develop this project during 30 months, UnB
was funded by a grant of 2,619,965.00 BRL (about 750,000.00
USD in June 2016) from the Federal Government.

The project was developed by a team of three professors, two
masters students, about fifty undergraduate students (not all
of them at the same time, since the team changed along the
time), two professional designers, and six senior developers
from FLOSS communities. Professors and undergraduate stu-
dents were from UnB and master students were from USP.
Regarding the designers and senior developers, seven of them
were living outside Brasilia, the UnB location. In other words,
we had a distributed team working in a collaborative virtual
environment. This diversity of actors and the relationships
between industry, academy, and government also made the
project a valued opportunity to explore the benefits and chal-
lenges of using FLOSS [11, 3, 6, 5] and Agile [14, 8] practices
for Software Engineering education.

All the code was developed as free software. The changes we
needed in the FLOSS tools were implemented by ourselves
and contributed back to their respective communities. Our
process was based on agile practices and FLOSS communities
interaction. We incrementally released five versions of the
new SPB Portal. The first release (beta) was in September
2014, only 9 months from the beginning of the project. The
old portal was shut down in September 2015. Finally, the last
version was released in June 2016.

In this paper, we present an overview of the new SPB Portal.
We share the methodology employed to develop this project.
This methodology has the goals of satisfying Government re-
quirements and adhering as much as possible to FLOSS and
agile practices [13, 15]. Moreover, we discuss lessons learned
in providing a distributed and collaborative virtual environ-
ment involving a large team of undergraduate students and
remote senior developers. In short, we released an innova-
tive platform for helping the Brazilian government to apply
empirical software development methods. This case can help
other projects to overcome similar software engineering chal-
lenges in the future, as well as to illustrate how universities
can improve the real-world experience of their students.

BACKGROUND

Since the beginning of computing the majority of developers
worked in the way that we now identify as free software,
that is, sharing code openly. This openness makes the code
available for inspection, modification, and use by any person
or organization [9, 11].

The elements that distinguish FLOSS from other types of
software are the reasoning about the development process, the
economic context, the relationship between developers and

users, as well as the ethical and legal characteristics that relate
to the software. In the context of FLOSS, user freedom is
promoted and its development is based on open collaboration
and development practices [11].

From the economic point of view, unlike what happens with
proprietary software, FLOSS promotes the establishment of
several suppliers that can compete with each other based on
the same software. This stronger competition among suppliers
brings benefits to users because it gives better assurances
regarding the evolution of the system and induces a reduction
in prices [11]. These freedoms and assurances on software are
guaranteed in Brazil by Law 9610/98 (copyright law). Most
of the time, this protection from the law complies with the
terms conferred by a contract related to certain software. This
contract is called “license”. A software license determines
a list of rights that are given to, and duties that are imposed
on a user of the software. In particular, what differentiates
FLOSS from proprietary software is just the way they are
licensed [11]. The FLOSS licenses guarantee the right to
execute, study, adapt, and improve the software. Example of
common FLOSS licenses are the GPL (GNU General Public
License), the Apache license, the MIT license, and the BSD
license.

The original incarnation of SPB portal has been designed in
2005 and released in 2007. From a practical point of view, it
is a web system that has consolidated itself as an environment
for sharing software projects [7]. It also provides a space
(community) for each software. Therefore, it was designed
to include tools that promote collaboration and interaction
in communities (by managers, users, and developers) of the
projects, according to the practices used in FLOSS commu-
nities. This includes mailing lists, discussion forums, issue
trackers, version control systems, and social networking envi-
ronments.

Initially, the purpose of the portal was only to share the soft-
ware developed in the Brazilian government to reduce the
costs of hiring software. However, it was observed that when
a software was released, a community was formed around
it, with several people collaborating and sharing the results
obtained through the use of those solutions, as commonly oc-
curs in FLOSS [4]. In this way, some software development
cooperatives and private companies have shown an interest in
making their software available on the SPB Portal.

The concept of Brazilian Public Software goes beyond FLOSS
[7]. In addition to being licensed under a FLOSS license,
this software needs to have explicit guarantees that it is a
public good, and its project must be available on the SPB
portal. Being a true public good assumes requirements that
can not be met solely by means of FLOSS licensing. For
example, there must be a relaxed trademark usage policy by the
original vendor that does not stop eventual competitors from
advertising services for that same software. Inclusion in the
SPB Portal also has extra requirements, such as having a public
version control system, installation manual, and hardware
requirements specification.

RELATED PROJECTS

The new SPB platform is a fully integrated environment, very
advanced in comparison with related initiatives. For instance,
the USA government has a platform designed to improve ac-
cess to federal government software, called Code.gov3. Itis an
interface to organize USA government projects, making it easy
for users and developers to obtain information and to access
their source code repositories at GitHub. However, it does
not provide social networking and CMS (Content Manager
System) features, as well as, other communication resources.

The European Commission (EC) assists the Open Source Ob-
servatory (OSOR)* that intends to exchange information, ex-
periences, and best practices around the use of FLOSS in the
public administration. It supports the discovering of FLOSS
projects made available by public agencies, providing infor-
mation about these projects, such as news, events, studies,
and solutions. It also offers discussion forums and commu-
nity mailing lists. But it does not have an integrated source
code repository manager, so for each project there is a link to
its own external repository. Previously, from 2007 to 2011,
the EC promoted the QualiPSo project that aimed to support
FLOSS users, developers, and consumers with resources and
expertise on FLOSS quality. The QualiPSo project also had
planned to develop a platform called QualiPSo Factory, but it
was not fully completed.

In Latin American there is an initiative called “Software
Piblico Regional™ that provides just a customized Gitlab
instance to share source code and documentation of projects
developed by the involved countries. Moreover, Chile has also
its own portal named “Repositério Software Piblico™. In the
communities of the portal, users can create content such as
news, documents, and wiki pages, but source code repositories
are available at the Bitbucket platform’.

The Brazilian government needed to evolve the SPB platform
that existed since 2007. When we started this project, the SPB
Portal had about 200 thousand registered users. We could not
just do something like contacting these users and asking them
to register an account at Github. Moreover, after the Edward
Snowden’s case, the Brazilian government issued a decree
(8.135/2013) requiring public agencies to host their informa-
tion systems by themselves, avoiding the usage of private
platforms, especially the ones provided by foreign companies.
Therefore, we needed to develop our own solution to cover
all the requirements, producing a complete governmental inte-
grated platform for collaborative software development.

OPEN QUESTIONS

In this paper, we share our experience in designing and de-
veloping the new SPB Portal by reporting the technical ef-
forts carried out, our empirical work process, and the lessons
learned. The new SPB Portal project presented three main
challenges, related to the open questions described below.

3https://code.gov
4https://joinup.ec.europa.eu/community/osor
5http://softwarepublicoregionalbeta.net
6http://softwarepublico.gob.cl
7https://bitbucket.org/softwarepublico

Q1. Which strategy could be used to integrate several existing
FLOSS tools to promote a collaborative software develop-
ment? Based on an extensive list of functional requirements
defined by the Brazilian Federal Government, we selected
some FLOSS systems to compose our solution, engineering a
nontrivial integration among them. We looked for the systems
set realizing the largest possible subset of the requirements list.
However, we were fully aware that we would need to improve
those systems in order to satisfy the remaining requirements.
We were also convinced that it would be impossible to satisfy
all of those requirements with a single tool.

Q2. How to involve students in real-world projects interact-
ing with real customers? Our team was mainly composed
of software engineering undergraduate students, who had the
opportunity to interact with the UnB managers, senior de-
velopers, designers, and even with technicians and managers
from the Brazilian Government. For the majority of the stu-
dents, this was a first professional experience. Even though,
our development process defined a central role on students
participation.

Q3. How to introduce typical FLOSS collaborative and agile
practices in the governmental development process? The soft-
ware development in Brazilian government is based on a very
traditional way, frequently focusing documentation deliveries.
We had to convince them to accept the idea of open scope and
empirical development. They had certain expectations about
the project development according to the Rational Unified
Process (RUP) and the Project Management Body of Knowl-
edge (PMBOK) approaches, which mismatched our work style
based on agile and FLOSS practices. So we created strategies
to conciliate these different organizational cultures within the
project.

REQUIREMENTS

By preparing the SPB Portal evolution, the Brazilian Govern-
ment has executed three steps to collect the requirements. The
first step was the collection of proposals using an online tool
called Pligg® and the open sharing of them on the Internet. In
this step, the citizens have written and voted on proposals they
were more interested in. At the end, the Brazilian Government
collected about 100 proposals and its initial perspective was
to give to the most voted ones the priority of implementation
on the new SPB Portal.

The second step was two face-to-face meetings that aimed to
discuss ideas (not necessarily based on the previous collected
proposals) to improve the SPB Portal and its environments.
On the first day, the participants were divided in two groups to
discuss (i) features and technologies as well as (ii) user experi-
ence and general ideas regarding the SPB Portal. Each group
has generated a “mind map” to summarize and to correlate its
ideas. During the second day, the participants were allocated
in three groups to discuss features related to (i) the process
of software evaluation and acceptance in the SPB Portal, (ii)
approaches to share the SPB projects, and (iii) ways to attract
universities and students to collaborate to SPB projects.

8https://pligg.com

https://code.gov
https://joinup.ec.europa.eu/community/osor
http://softwarepublicoregionalbeta.net
http://softwarepublico.gob.cl
https://bitbucket.org/softwarepublico
https://pligg.com

The last step was a workshop with some IT representatives of
the Federal Government and public organizations and, again,
it was focused on collecting new proposals to evolve the SPB
Portal.

After these unconnected three steps, the Brazilian Government
has generated a list of 145 requirements. To provide a cohesive
initial list of requirements, we have proposed to release the
first stable version of the new platform to replace the old SPB
Portal, prioritizing the following features:

1. An organized public software catalog;

2. Social network environment (profiles for users, software
pages, and community pages);

3. CMS features;

4. Web-based Git repository manager with Wiki and issue
tracking features;

5. Mailing lists and discussion forums.

Moreover, the new SPB Portal would only work properly if
there was a unique authentication to use the provided fea-
tures. Additionally, a unified interface was an important non-
functional requirement to provide better user experience on
the new platform.

Other requirements were in the wishlist such as an integrated
search engine and a web-based source code static analysis
monitor. By analyzing all of these requirements, we have
designed the SPB evolution project based on existing FLOSS
tools.

ARCHITECTURE

From the architeture point of view, the integration of several
features (such as centralized authentication, unified interface,
search engine as well as other back-end features) of systems
with different programming languages and frameworks would
require a non-trivial amount of work. In this context, the most
important architetural requirements for the new platform were:

1. Integrating existing FLOSS systems with minimal differ-
ences from their original versions;

2. Providing consistent user interface across different systems
as well as centralized authentication.

The adoption of existing FLOSS systems and the minimization
of their local changes had the purpose to lower the effort of
upgrading the software packages that compose the platform
to newer version of their original software. With this facility,
the platform benefits from maintenance and improvements
made by communities. The development of a consistent user
interface aims to provide to platform’s users a smooth transi-
tion between different systems. Without it, the necessity of
adaptation and learning for each tool could get users confused
and fatigued. For the first requirement, we have identified four
main systems which would have specialized teams for work
in the integration process. Team members have learned how
to write code to their assigned systems and how to contribute
to the original communities to align the used version with the
original one.

In the end of the project, the SPB portal has combined
more than ten systems, such as Colab, Noosfero, Gitlab, and
Mezuro.

Colab’ is a systems integration platform for web applications.
One of its goals is allowing different applications to be com-
bined in such a way that an user does not notice the change
between applications. For that, Colab provides facilities for: (i)
Centralized authentication, (ii) Visual consistency, (iii) Relay-
ing of events between applications, and (iv) Integrated search
engine. Colab implements this integration by working as a re-
verse proxy for the applications, i.e., all external requests pass
through Colab before reaching them. Initially, Colab had sup-
port for a small set of applications (Trac, GNU Mailman, and
Apache Lucene) hard-coded in its core. Our team have helped
Colab upstream to redesign its whole architecture, enabling
the development of plugins to integrate new tools. We also
added a feature that allowed Colab to run asynchronous tasks,
which was a major improvement for us since we were devel-
oping a complex system. We have also migrated Django(web
framework used by Colab) to the latest version and worked on
RevProxy (the more important dependency of Colab) to put it
in a good shape, fixing many bugs.

Noosfero!? is a software for building social and collabora-
tion networks. Besides the classical social networking fea-
tures, it also provides publication features such as blogs and a
general-purpose CMS. Most of the user interactions with SPB
is through Noosfero: user registration, project home pages
and documentation, and contact forms. Noosfero was the tool
that contemplated several functional requirements, therefore
we have made a large number of contributions to upstream.
We have also helped it to migrate to the latest Rails version
(web framework used by Noosfero), to enable the federation
implementation (federation with other social networks) and to
decouple the interface and the back-end.

Gitlab!! is a web-based Git repository manager with wiki
pages and issue tracking features. It is a FLOSS platform
and focuses on delivering a holistic solution that will see de-
velopers from idea to production seamlessly and on a single
platform. Gitlab has several unique features, such as built-in
continuous integration and continuous deployment, flexible
permissions, tracking of Work-in-Progress work, moving is-
sues between projects, group-level milestones, creating new
branches from issues, issues board, and time tracking. We
have contributed to Gitlab upstream with some improvements
related to configuration files and with the development of a
new plugin that enables user authentication in Gitlab through
the REMOTE_USER HTTP header. This plugin was needed
because Colab uses this mechanism to manage the authentica-
tion.

Mezuro!? is a platform to collect source code metrics to mon-

itor the internal quality of software written in C, C++, Java,
Python, Ruby, and PHP. In general, source code metrics tools

9https ://github.com/colab
10http ://noosfero.org
Mhttp://gitlab.com

12http ://mezuro.org/

https://github.com/colab
http://noosfero.org
http://gitlab.com
http://mezuro.org/

do not present a friendly way to interpret their results and, even
more, do not follow a standardization between them. Mezuro
collects and presents these results to the end user, specially, by
analyzing source code metric history during its life cycle. The
Mezuro platform provides a single interface grouping avail-
able tools, allows selection and composition of metrics in a
flexible manner, stores the metrics evolution history, presents
results in a friendly way, as well as, allows users to customize
the given interpretation accordingly to their own context. Dur-
ing the project, we helped to modularize the Mezuro project
in several independent services to minimize the amount of
code to maintain it, helping to test it and grant its code quality.
Currently, its computation and visualization modules use Kali-
bro and Prezento, respectively. They were developed into the
Mezuro project and evolved during its integration to the new
SPB Portal.

System unification and User eXperience evolution

The conceptual architecture of the platform is presented in
Figure 1. Colab initially handles all user interaction, directing
requests to one of the integrated applications. It post-processes
responses from the applications to apply a consistent visual
appearance, manages authentication, and provides a unified
search functionality: instead of using the redundant restricted
search functionality of each application, a search on the SPB
portal might return content from any of the applications, be it
web pages, mailing list posts, or source code.

internet .

w

) T

‘NoosferoH Gitlab H Mailman ‘ Mezuro ‘

Figure 1. SPB architecture overview.

However, integration of collaborative environments goes be-
yond functional aspects. To reduce the citizens perception of
system complexity and to encourage them to use the software,
a platform should offer a unified experience across its envi-
ronments. Thus, the SPB Portal information architecture was
redesigned to provide a transparent navigation and to reach
users with different profiles. A process of harmonization has
been employed on the interaction models of each tool to re-
duce the learning curve. At the same time, a new visual style
was created to unify the navigation experience and to com-
ply with the guidelines of the digital communication identity
standard established by the Federal Government.

With the increase in system features and the addition of new
tools, the visual style has steadily evolved to keep the navi-
gation unified. Moreover, tools from different backgrounds,
which in many cases provide similar functionality, prompted
the development of a unified interface. Some features, such
as search and user profile editing were eliminated from the
individual applications, and implemented centrally to ensure a
consistent look and feel.

Another challenge was responsive web design. The integrated
applications had varying degrees of support for responsiveness,
and the common interface had to adapt for each individual
scenario. In particular, Noosfero did not yet have a responsive
design; we also engaged in its development and contributed
towards that goal.

Deploy

The SPB platform was deployed in 7 virtual machines with dif-
ferent functions, as we can see in Figure 2. The reverseproxy
handles the HTTP requests and redirects them to the integra-
tion, the email sends and receives e-mails on behalf of the
platform and the monitor keeps the entire environment tracked.
These three mentioned virtual machines - reverseproxy, email
and monitor - are accessible via Internet and the other ones
are only available in the local network created between them.

Integration works as a second layer of proxy beneath reverse-
proxy, any request to the platform will be handled by it. The
Colab service provides interface, authentication and search
engine integration among all the services. When a request is
received to a specific service, Colab authenticates the user in
the target tool, sends the request and makes a visual transfor-
mation in the HTML page which is the content of the response.
Another user-oriented feature is the integrated search engine,
when the user want to find something in the platform Colab
will perform the search in the whole databases. Colab itself
provides a web interface for GNU Mailman and we have two
others integrated tools in integration: Gitlab and Prezento.
Gitlab provides web interface for Git repositories and issues
tracker, and Prezento is a front-end for source code static
analysis.

The source code static analysis is performed by mezuro. It runs
some static analysis tools on source code stored in a repository
and provides this data to Prezento. A social network and CMS
is provided by Noosfero in social, and the databases of all
tools with a cache service are in database.

FEATURES

The new generation of the SPB Portal combines features
adapted from existing collaborative software and features
developed by us. The new functions (newly developed or
partially modified) were contributed back to the official repos-
itories.

As aresult, we have a platform that integrates and harmonizes
different features such as social networking, mailing list, ver-
sion control system, content management, and source code
quality monitoring. Our aim was to develop functionalities
by reusing functionality of collaborative software already in-
tegrated to the platform. In addition, we tried to keep this
integration transparent to end users. We can discuss on the
main features according to the three groups below.

Software Project and Software Community. In the new
SPB Portal, each software has a standard set of pages and
tools. Besides accessing support pages (such as FAQ and
installation guide) within the platform, users will be able to
download different versions of the software and find several
mechanisms of software development management.

Log/Info

SQL = e s s

HTTP rssssnnunnns

Front-end HTTP 7

SMTP

Reverseproxy

PostgresQL @

Database

\ 4

[Munin }[Logl\nalyzer]

Monitor

] |

v

Kalibro Kalibro
Processor | |Configuration

Mezuro

Noosfero

Social

Email

Figure 2. Instanciation view of the SPB architecture.

Focusing on the collaborative development, Mailman was in-
tegrated to the platform to allow the dialogue and communica-
tion between developers, users and enthusiasts of a determined
software. The software has its own mailing list whose privacy
can be configured by the software community administrators.

The software has a social interface area (“software commu-
nity”’) where users can find other users, blogs, summary of
recent activities, or any other relevant community-produced
content. Users logged to the platform can request member-
ship to different software communities and each community
member can access and edit restricted content. For this pur-
pose, many Noosfero features related to social networking and
content management were integrated to the portal.

To assist decision-making, the new SPB Portal has acquired
assessment and statistical tools. Now, users will be able to
rate the software and make comments and all information will
be avaiable to other users. Moreover, the software has a sec-
tion containing its statistical data, where values are calculated
based on data provided by users and the system.

The role of the administrator is present in the software project
and in its community. The administrator is responsible for
moderating content, memberships and user comments. The
administrator is also the one who can make changes in the
software homepage content.

Software Catalog and Global Search. The platform also
provides a search tool called Software Catalog, which allows
users to find softwares available in the portal. In this catalog,
we developed some search options to make the navigation
easier, such as filters (by type of software or category), sorting
and score.

To expand the searching scope and cover more types of content,
we developed the global search tool. This tool unifies search
mechanisms provided by the different collaborative software
used on the SPB Portal. Any user can find a public content
in the context of social networking, mailing list, and software
repository.

Software Development Tools. Usually, Collaborative Devel-
opment Environments (CDE) demand a version control system,
trackers, build tools, knowledge centers, and communication
tools [12]. The new SPB Portal also provides tools to encour-
age developers to keep the source code and its development
activity within the platform. Any created software has, by
default, an associated Git repository with Wiki pages and issue
tracking. These tools are supplied by the integration of Gitlab
into the platform.

Developers can also evaluate the software source code to mea-
sure software quality. With Mezuro, they can schedule the
analysis of the source code and follow its metric results evo-
lution over time. Results of each metric analysis are public,
which allows greater transparency between the developer and
the community that uses the software. Thereby, the maintain-
ers can decide if the given solution meets the source code
quality requirements.

Thus, the SPB Portal became a platform to stimulate the open-
ness of the source code; dialogue between users and the de-
velopment team; and also maintenance and evolution of the
software, which provide more transparency in Government
investments regarding to software development.

DEVELOPMENT ORGANIZATION AND PROCESS

The SPB team was composed of a variety of professionals
with different levels and skills, where most of them were un-
dergraduate students of software engineering. Since students

could not dedicate many hours per week to the project, they
had the flexibility to negotiate their work schedule during the
semester in order to not harm their classes and coursework.
Their work routine in the project included programming and
DevOps tasks.

The project required a vast experience and background that
usually undergraduate students do not have. For this reason,
a few senior developers have joined the project to help with
the more difficult issues and to transfer knowledge to the
students. Their main task was to provide solutions for complex
problems, working as developers. As these professionals are
very skillful and the project could not fund full-time work for
all of them, they worked part-time on the project. In addition,
they lived in either different Brazilian states or other countries,
which led much of the communication to be online.

In short, our work process was based on open and collabora-
tive software development practices. The development process
was based on the adaptation of different agile and FLOSS com-
munities practices, with a high degree of automation resulting
from DevOps practices. Thus, the work process was executed
in a cadenced and continuous way.

Finally, the last group of actors of this project was composed
of employees of the Brazilian Ministry of Planning, Devel-
opment, and Management. All the project decisions, valida-
tions, and scope definitions were made by them. In this way,
we incrementally developed a software product with releases
aligned to strategic business objectives. As one can see, the
project had a wide range of different stakeholders that had to
be organized and synchronized.

Team Organization

Approximately 70% of the development team was composed
of software engineering undergraduate students from UnB
and they worked physically in the same laboratory. Each
student had their own schedule based on her classes, what
complicates the implementation of pair programming. The
senior developers tried to synchronize their schedule with
students schedules. To cope with this scenario, we had a few
basic rules guiding the project organization:

1. Classes have high priority for undergraduate students;
2. Pairing whenever possible (locally or remotely);

3. We had one morning or afternoon per week when everyone,
but the remote members, should be together physically in
the laboratory;

4. Every 2 to 3 months the senior developers would travel to
work alongside the students for a few days.

With the aforementioned rules, we divided all the project into
four different teams: Colab, Noosfero, Design, and DevOps.
One student of each team was the coach, responsible for reduc-
ing the communication problem with other teams and helping
the members to organize themselves in the best way for ev-
eryone (always respecting their work time). The coach had
also the extra duty of registering the current tasks developed
in the sprint. One important thing to notice is the mutability

of the team and the coach. During the project many students
changed their teams to try different areas.

One characteristic of the teams was the presence of (at least)
one senior per team. This was essential, because hard deci-
sions and complex problems were usually referred to them.
Thus, it was not the coach role to deal with complicated techni-
cal decisions, what encouraged students to be coaches. Lastly,
the senior developers worked directly with the students, and
this was important to give to students the opportunity to in-
teract with a savvy professional in their areas and to keep the
knowledge flowing in the project.

Finally, we had to add two more elements to the team or-
ganization that were essential for the project harmony: the
meta-coach and professors. The former was a software engi-
neer recently graduated that wanted to keep working on the
project. The latter were professors that orchestrated all the
interactions between all members of the project. The meta-
coach usually worked in one specific team and had the extra
task of knowing the current status of all teams. Professors and
the meta-coach worked together to reduce the communication
problem among teams. Lastly, all the paperwork tasks, such as
reporting on the project progress to the Brazilian Government,
was handled by professors.

Communication and Management

Our team had many people working together, and most of the
seniors worked in different cities remotely. Also, we tried to
keep our work completely clear to the Brazilian Government
and citizens interested in following the project. To handle
these cases, we used a set of communication and management
tools.

For communication between members in different places we
used: video conferencing with shared terminal tools, IRC, and
mailing lists. For example, when one student had to work
in pair with a senior, normally, they used video conferencing
tool for talking and shared a terminal session (both typing and
seeing each other screen in real time). For questions and fast
discussion, we used IRC. For general notification, we used the
mailing lists.

For managing the project, we used the SPB Portal itself; first
to validate it by ourselves, and also because it had all the
required tools. We basically created one Wiki page per release
in the SPB Gitlab instance with a mapping between strategical,
tactical, and operational views. We had one milestone per
user history (feature) and one or more issues for addressing
each feature. With this approach we achieved two important
goals: keeping all the management as close as possible to the
source code and tracking every feature developed during the
project. Initially, our decision to use the Wiki was empirical,
but later such decision was reinforced by a research conducted
by Joseph Chao showing the advantage of using Wikis [2, 10].

High-level Project Management and Reporting

The Brazilian Government used to work with software de-
velopment in a very traditional way. They would frequently
focus on documents and not on what was, in our opinion, what
really matters: working software. This dissonance caused us

a communication noise with the Government, because they
would often question our work style. It was especially hard
to convince them to accept the idea of open scope and agile
development, but after months of labor and showing results
they stopped resisting.

Sprint

A

Planning

Strateg
meeting

Validate

Figure 3. Meetings cycles.

We defined some level of meeting granularity to avoid generat-
ing too much overhead to the developers. We had a strategical
and a validating meeting with the Brazilian Government (the
former once in month and the latter biweekly), a release plan-
ning with the entire team (one per month), and finally a sprint
planning (biweekly). Figure 3 is a diagram that represents our
meeting organization.

In the strategical meeting we usually defined the priorities and
new features with the Brazilian Government. Normally the
professors, the coach of each team, the meta-coach, and some
employees of the Federal Government would participate in
this meeting. We usually discussed what the team already pro-
duced since our last meeting, and established the new features
for the next release. Notice that just part of the team would
join this meeting to avoid generating unnecessary overhead to
developers, but all the students interested to participate were
allowed to join, since many students wanted this experience
during the project.

After the strategical meeting with Brazilian Government
agents, we had a planning phase with all teams together. In this
part, each team worked together to convert the Government
wishes into smaller parts which were represented by the epics
of the release. Each coach was responsible for conducting
the planning and recording it on the project Wiki. With this
epic, biweekly the team have documented their sprint schedule
(with small achievements mapped to issues).

To keep the Brazilian Government always updated, we invited
them to work with us to validate the new features in progress.
Normally we had a meeting biweekly. Basically, this was our
work flow. We always kept everything extremely open to the
Government (our way of working, and the one often used by
FLOSS projects) and to the team.

To keep the track of all of these things we used the SPB Portal
itself, especially Gitlab. Basically, we had:

1. Project repository: we have one organization with many
repositories;

2. Wiki: each release has one Wiki page with the compilation
of the strategical meeting;

3. Milestones: each milestone was used to register a user story
(feature);

4. Issues: each sprint planning generated issues, which we
associated to the related milestone (feature as user story) and
registered on the related Wiki page. Finally, each developer
assigned the issue to herself.

Notice that this workflow gave us and the Brazilian Govern-
ment agents full traceability from a high level view of each
feature to the lowest level (source code). It is important to
highlight that we converged to this workflow after many ex-
periments. For example, we used a tool named Redmine for
organizing our tasks during some sprints. However, this tool
revealed to be inefficient for our case since the government
agents lost part of the project traceability. We realized that
centralizing all the work in the SPB Portal was the best option
for our case.

CONCLUSION

In this work, we presented and discussed issues experienced
during a government-funded project, in partnership with the
University of Brasilia and the University of Sdo Paulo, to
evolve the Brazilian Public Software Portal. Our contributions
are twofold. First, we present the strategy used to develop and
to deliver an unprecedented platform to Brazilian government.
Second, based on the results of the SPB Portal project, we
point out that it is possible to mitigate conflicts experienced in
the development environment and to conciliate governmental
and academy cultures. To summarize our main contributions,
we answered in this section the three open questions those
guided this paper.

Which strategy could be used to integrate several existing
FLOSS tools to promote a collaborative software develop-
ment? The SPB portal integrates more than ten FLOSS tools
and provides several features, such as social network, mail-
ing list, version control, content management and source code
quality monitoring. Concerned with the platform sustainability
and maintainability, the aforementioned FLOSS tools were in-
tegrated with minimum differences from their official versions
and the new developed features were sent upstream to ensure
an alignment between the portal systems and their respective
official versions. In the integration process, the main software
were identified, specific teams were formed to work with each
one of them and each team was composed of students with
different levels of skills and at least one senior professional.

How to involve students in real-world projects interacting
with real customers? In terms of mitigating conflicts, we
tried to show that, as long as the university can provide a
healthy and challenging environment to its students, one may
conciliate studies and professional training in universities. The
students interacted with professionals of diverse fields of ex-
pertise, and they were able to participate in all levels of the
software development process. This contributed to a great
learning opportunity. In our work process, based on open and
collaborative software development practices, students could
negotiate their work schedule as well as count on IT profes-
sionals to solve development issues. Among the students, we
have defined coaches for each team and a meta-coach (coach

of whole project). All coaches, together with professors, have
intermediated the communication between client (the Brazil-
ian Government) and the rest of the group. After the end of
the project, some students successfully embraced opportuni-
ties in public and private sectors, within national borders and
abroad. Some other students went further and started their
own companies.

How to introduce typical FLOSS collaborative and agile
practices in the governmental development process? With
some adaptations, it is feasible to conciliate agile methodolo-
gies and FLOSS practices to develop software to governmental
organizations with functional hierarchical structures that use
traditional development paradigm. Aiming at reducing client
questions about workconclusion, a DevOps team was created
to automate all deploy process and also to work in continuous
delivery. The Government was brought to our work environ-
ment and interacted with our management and communication
tools. For the project success, we focused on providing a
friendly working environment as well as on showing to gov-
ernmental agents another way to interact with the FLOSS
community and the university.

Lessons Learned

From the answers of our initial open questions, we can also
highlight six lessons learned to better share our experience
during the development of the new SPB Portal.

The participation of experienced professionals is crucial
to the success of the project. One important factor for the
students was the composition of the teams with the participa-
tion of experienced professionals. On the technical side, the
senior developers and designers would handle the more diffi-
cult technical decisions, creating a work environment where
the students could develop their skills in a didactic way with-
out pressure. On the management side, the active participation
of professors — who are, in the end, the ones responsible for
the project — is crucial to make sure students participation is
conducted in a healthy way, and it is an instance of leading by
example.

A balanced relationship between academia and industry.
The experience of the SPB project led UnB to develop a work
style which proved to be appropriate for an educational en-
vironment that brings academia and industry together. The
highest priority from the university’s point of view is the stu-
dents. Considering this, the activities of the project were never
prioritized to the detriment of classes and other pedagogical
activities. In summary, we had students working at different
times, part time, remotely or locally, always respecting their
individual conditions, but doing the work in a collective, col-
laborative and open way. And even under a potentially adverse
environment, the project delivered the desired solution with
success.

Managing different organizational cultures. In the begin-
ning of the project, the Brazilian Government stakeholders
had certain expectations about the project development that,
let’s say, did not exactly match our work style based on ag-
ile and FLOSS practices. We had to develop strategies that
would support these different organizational cultures. There-

fore, we have adapted the process between our team and the
Government managers who managed the project on their side,
assuming a traditional waterfall process.

Managing higher-level and lower-level goals separately.
During the initial phase of the project, the Brazilian Gov-
ernment team has brought strategic discussions to techni-
cal/operational meetings that were supposed to be about prac-
tical technical decisions. This produced a highly complex
communication and management environment, overloading
the professors, who were supposed to maintain the Govern-
ment strategy synchronized with the implementation plans of
the development team. This was hard, especially because the
aforementioned cultural mismatch. Mixing both concerns in
the same discussions caused confusion on both sides. From
the middle of the project we were able to keep those concerns
separated, what eased the work of everyone involved.

Living with ill-advised political decisions. At the initial
phases of the project, by political and personal motivation, the
main stakeholders from the Brazilian Government imposed
the use of Colab to guide the development of the new SPB
platform. Our team was totally against the idea because we
already knew that Colab was a very experimental project and
its adoption could dramatically increase the project complex-
ity. Even though, we provided technical reasons to not utilize
Colab, the Government was adamant and we had to manage
this problem. We did massive changes to Colab, and by the
end of the project we had completely rewritten it to make it
stable. It is important to notice that the Government compelled
us to accept a technical decision based only on political in-
terests, without considering all the resources that would be
spent due to that decision. At the end of the project, we veri-
fied that Colab indeed consumed a vast amount of the budget
and increased the project complexity. After our analysis on
the decision made by the Government, we understand that
some Brazilian Government managers are capable of ignoring
technical reasons in favor of political decisions.

Consider sustainability from the beginning. In the process
of deploying the SPB platform in the Brazilian Government
infrastructure we had to interact with the Government techni-
cians. We did several workshops, training and a meticulous
documentation describing all the required procedures to up-
date the platform, however, we realized that the technicians
would constantly avoid the responsibility. After noticing the
aforementioned situation, we organized a DevOps team that
completely automated all the deployment procedure. We sim-
plified all the platform deployment to a few steps: (i) initial
configurations (just ssh configuration) and (ii) the execution
of simple commands to completely update the platform. By
the end of the project, we observed that the Government tech-
nicians invariably still depended on our support to update the
platform even with all the automation provided by us. We
were sadly left with a feeling of uncertainty about the future
of the platform after the project ended. In hindsight, we real-
ize that the Brazilian Government dedicated system analysts
and managers to the project, but not operations technicians.
The later should have been more involved with the process so

they could at least be comfortable in managing the platform
infrastructure.

Final Remarks and Future Work

The SPB portal is in production'? and its full documentation,
including detailed architecture and operation manuals, is also
available!*. All the integrated tools are FLOSS and our contri-
butions were published in open repositories, available on the
SPB Portal itself. We also contributed these features back to
the respective communities, which benefits both those com-
munities and us, since we can share future development and
maintenance effort with other organizations that participate in
these projects.

Future work should use data produced by the project to val-
idate and evaluate how the used FLOSS and Agile practices
have impacted the students and the governmental development
process. For this, we will conduce a postmortem analysis us-
ing the project open data and a survey targeting the involved
stakeholders.

REFERENCES
1. Grady Booch and Alan W. Brown. 2003. Collaborative
Development Environments. Advances in Computers 59
(2003), 1-27. DOI:
http://dx.doi.org/10.1016/S0065-2458(03)59001-5

2. Joseph Chao. 2007. Student project collaboration using
Wikis. In Software Engineering Education & Training,
2007. CSEET 07. 20th Conference on. IEEE Computer
Society, 255-261.
http://dblp.uni-trier.de/db/conf/csee/csee2007.html

3. Gregory DeKoenigsberg. 2008. How Successful Open
Source Projects Work, and How and Why to Introduce
Students to the Open Source World.. In CSEET, Hossein
Saiedian and Laurie A. Williams (Eds.). IEEE Computer
Society, 274-276.
http://dblp.uni-trier.de/db/conf/csee/csee2008.html

4. Nicolas Ducheneaut. 2005. Socialization in an Open
Source Software Community: A Socio-Technical
Analysis. Computer Supported Cooperative Work 14, 4
(2005), 323-368. DOI:
http://dx.doi.org/10.1007/s10606-005-9000-1

5. Fabian Fagerholm, Alejandro S. Guinea, Jiirgen Miinch,
and Jay Borenstein. 2014. The Role of Mentoring and
Project Characteristics for Onboarding in Open Source
Software Projects. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement (ESEM ’14). ACM, New
York, NY, USA, Article 55, 10 pages. DOI:
http://dx.doi.org/10.1145/2652524.2652540

6. Fabian Fagerholm, Patrik Johnson, Alejandro Sdnchez
Guinea, Jay Borenstein, and Jiirgen Miinch. 2013.
Onboarding in Open Source Software Projects: A
Preliminary Analysis. CoRR abs/1311.1334 (2013). http:
//dblp.uni-trier.de/db/journals/corr/corri311.html

13https ://softwarepublico.gov.br
14https://softwarepublico.gov.br/doc/

11.

12.

14.

15.

. C.S. Freitas and C. Meffe. 2008. FLOSS in an Open

World: best practices from Brazil. Roadmap white paper.
Paris, France. 69-73 pages. https:
//www.pilotsystems.net/actus/2020-floss-roadmap.pdf In:
2020 FLOSS Roadmap.

. Annemarie Harzl. 2017. Can FOSS projects benefit from

integrating Kanban: a case study. Journal of Internet
Services and Applications 8, 1 (06 Jun 2017), 7. DO :
http://dx.doi.org/10.1186/s13174-017-0058-z

. Eric von Hippel and Georg von Krogh. 2003. Open

Source Software and the "Private-Collective" Innovation
Model: Issues for Organization Science. Organization
Science 14, 2 (mar 2003), 209-223. DOI:
http://dx.doi.org/10.1287/orsc.14.2.209.14992

. Eirini Kalliamvakou, Daniela E. Damian, Kelly Blincoe,

Leif Singer, and Daniel M. Germén. 2015. Open
Source-Style Collaborative Development Practices in
Commercial Projects Using GitHub. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1.
574-585. DOI : http://dx.doi.org/10.1189/ICSE.2015.74

Fabio Kon, Paulo Meirelles, Nelson Lago, Antonio
Terceiro, Christina Chavez, and Manoel Mendonca. 2011.
Free and Open Source Software Development and
Research: Opportunities for Software Engineering.. In
SBES. IEEE Computer Society, 8§2-91.
http://dblp.uni-trier.de/db/conf/sbes/sbes2011.html

Filippo Lanubile, Christof Ebert, Rafael Prikladnicki, and
Aurora Vizcaino. 2010. Collaboration Tools for Global
Software Engineering. IEEE Software 27, 2 (2010),
52-55.DOI:http://dx.doi.org/16.1169/MS.2010.39

. Audris Mockus, Roy T. Fielding, and James D. Herbsleb.

2002. Two case studies of open source software
development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol. 11 (July 2002), 309-346. Issue 3. DOI:
http://dx.doi.org/10.1145/567793.567795

Jan-Philipp Steghofer, Eric Knauss, Emil Alégroth, Imed
Hammouda, Hakan Burden, and Morgan Ericsson. 2016.
Teaching Agile: Addressing the Conflict Between Project
Delivery and Application of Agile Methods. In
Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE ’16). ACM,
New York, NY, USA, 303-312. DOI:
http://dx.doi.org/10.1145/2889160.2889181

Davide Tosi, Luigi Lavazza, Sandro Morasca, and Marco
Chiappa. 2015. Surveying the Adoption of FLOSS by
Public Administration Local Organizations.. In OSS
(IFIP Advances in Information and Communication
Technology), Ernesto Damiani, Fulvio Frati, Dirk Riehle,
and Anthony I. Wasserman (Eds.), Vol. 451. Springer,
114-123.
http://dblp.uni-trier.de/db/conf/oss/0ss2015.html

http://dx.doi.org/10.1016/S0065-2458(03)59001-5
http://dblp.uni-trier.de/db/conf/csee/csee2007.html
http://dblp.uni-trier.de/db/conf/csee/csee2008.html
http://dx.doi.org/10.1007/s10606-005-9000-1
http://dx.doi.org/10.1145/2652524.2652540
http://dblp.uni-trier.de/db/journals/corr/corr1311.html
http://dblp.uni-trier.de/db/journals/corr/corr1311.html
https://softwarepublico.gov.br
https://softwarepublico.gov.br/doc/
https://www.pilotsystems.net/actus/2020-floss-roadmap.pdf
https://www.pilotsystems.net/actus/2020-floss-roadmap.pdf
http://dx.doi.org/10.1186/s13174-017-0058-z
http://dx.doi.org/10.1287/orsc.14.2.209.14992
http://dx.doi.org/10.1109/ICSE.2015.74
http://dblp.uni-trier.de/db/conf/sbes/sbes2011.html
http://dx.doi.org/10.1109/MS.2010.39
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/2889160.2889181
http://dblp.uni-trier.de/db/conf/oss/oss2015.html

	Introduction
	Background
	Related Projects
	Open Questions
	Requirements
	Architecture
	System unification and User eXperience evolution
	Deploy

	Features
	Development Organization and Process
	Team Organization
	Communication and Management
	High-level Project Management and Reporting

	Conclusion
	Lessons Learned
	Final Remarks and Future Work

	References

