
On the Relationship between Newcomer Motivations and
Contribution Barriers in Open Source Projects

Christoph Hannebauer Volker Gruhn

paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen, Germany

{first name.last name}@paluno.uni-due.de

ABSTRACT
There has been extensive research on the the factors that mo-
tivate software developers to contribute to an Open Source
Software (OSS) project. Contribution barriers are the counter-
side to motivations and prevent newcomers from joining the
OSS project. This study searches for relations between moti-
vations and contribution barriers with a web-based survey of
117 developers who had recently contributed their first patch
to either Mozilla or GNOME.

The results substantiate the hypothesis that newcomers’ moti-
vations mirror their mental models of the OSS project they are
going to contribute to, and that the mental model determines
the impact of contribution barriers. More generally, we pro-
pose a new model for the joining process to an OSS project that
takes social properties, motivations, and contribution barriers
into account.

ACM Classification Keywords
D.2.9 Software Engineering: Management—programming
teams

Author Keywords
Open Source; Contribution Barriers; Newcomers; Survey

INTRODUCTION
A steady influx of new developers is crucial for the sustain-
ability of an Open Source Software (OSS) project [4]. To gain
new developers, the OSS project must not only attract them
but also help them onboard the project. In the onboarding
phase, the attracted developers may still fail to overcome the
contribution barriers of the project and therefore do not join
the OSS project’s development team. Developers trying to
contribute their first patch to a specific OSS project are called
newcomers in the context of this OSS project [34], irrespective
of their expertise with software development in general or with
other OSS projects.

While there is some research about what contribution barriers
exist [33], it is unclear which contribution barrier are more and
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

OpenSym ’17, August 23–25, 2017, Galway, Ireland

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5187-4/17/08. . . $15.00

DOI: https://doi.org/10.1145/3125433.3125446

which are less important. The importance of a contribution
barrier is, on the one hand, a result of how often it affects
newcomers. On the other hand, it is a consequence of the
impact it has on each individual newcomer. While some con-
tribution barriers are merely a nuisance, others might be the
single reason why a newcomer refrains from contributing to
an OSS project.

We conducted a survey with newcomers to the two OSS
projects Mozilla and GNOME to find out which of the contri-
bution barriers are important for newcomers. 117 newcomers
answered to the web-based questionnaire. This data allowed a
statistical analysis of a hypothesis regarding the relationship
between contribution barriers and motivations derived in the
next subsection:

Motivations and Contribution Barriers
According to the Theory of Cognitive Dissonance [9], a per-
son feels discomfort if two of the person’s opinions contradict
each other. This is particularly the case when new information
contradicts the expectation derived from existing information.
This type of discomfort is called dissonance and its reduction
is a natural stimulus just like hunger. In order to reduce disso-
nance, people may take a new point of view, but they may also
just discard newly gained information if it does not fit their
existing views.

Before newcomers decide that they want to contribute to an
OSS project, they have a mental model of how an OSS project
works and especially about the procedures and reception of
their contribution. Like any model, this mental model is in-
complete, although some newcomers may be aware of this
incompleteness. Even if they are, they have unconscious or
conscious assumptions about the procedures of their contribu-
tion, as they must have founded their decision to contribute
on something. Thus, their motivation to contribute derives
from this model. For example, if they assume that a contribu-
tion to an OSS project gains respect for the contributor, then
they may derive the motivation to gain respect from the OSS
community through their contribution. Accordingly, this can
be used in the other direction: Contributors’ motivations are
indicators for their assumptions about the contribution before
their contribution experience.

If the contribution experience contradicts the previous assump-
tions, dissonance arises. The mental model also includes as-
sumptions about what parts of the contribution procedure are
difficult and which are not. Hence, unexpected problems create

https://doi.org/10.1145/3125433.3125446

more discomfort than expected problems. One way to reduce
this dissonance is to refrain from the contribution: Either after
accepting the new information about unexpected problems or
through discarding existing information that served as foun-
dation for the motivation, even if that information was in fact
true. A newcomer may also ignore or accept the unexpected
problems and continue with the contribution, if that is the
lesser mental effort [9]. Since dissonance can be a reason to
refrain from contribution, dissonance influences the perception
of contribution barriers.

This application of the Theory of Cognitive Dissonance to
OSS contributions leads to the following hypothesis:

Contribution barriers are less important for contribu-
tors whose motivations suggest that they expect these
contribution barriers.

Definition of Terms
Von Krogh et al. [38] first introduced the terms contribution
barrier and joining script in the context of OSS projects. Ac-
cording to their definition, contribution barriers are hurdles
that prevent newcomers to join an OSS project. Joining scripts
are the processes that newcomers should follow in order to
be granted commit access to the project’s Version Control
System (VCS). Typically, the joining script is not fully docu-
mented. Thus, newcomers need to learn the joining script via
observation or trial-and-error, which can be cumbersome [17].

Analogously to our previous studies [12, 13] and Shah [31],
this study distinguishes between the modification of the source
code of an OSS project and the submission of this modifica-
tion back to the OSS project. Newcomers have to pass both
steps for a successful contribution. Both steps have their own
contribution barriers, which are dubbed modification barriers
and submission barriers, respectively. Accordingly, there are
separate modification motivations and submission motivations.

The OSS Projects Mozilla and GNOME
Netscape made their “Communicator” an OSS project in
1998 [27]. They found the Mozilla Foundation to host the
Mozilla project. While the Mozilla project is well known for
its browser Firefox, it is more diverse. More than 300 modules
and submodules [25] include the mail client Thunderbird, the
issue tracker Bugzilla, and the cryptographic library Network
Security Services, to name three examples. These applica-
tions usually target multiple platforms like Linux, MacOS,
Windows, and also mobile platforms like Android. Develop-
ers may also choose among multiple development platforms
including Unix and Windows [22].

GNOME [36] is a window manager and application collec-
tion for Unix operating systems. In 1997, developers in the
GNU community started the GNOME project [6]. Today, the
GNOME Foundation hosts the GNOME project as a non-profit
organization. An elected board governs the community [10].

Mozilla as well as GNOME each use a Bugzilla instance as
issue tracker [24, 35]. Both follow a process that enforces an
issue in the Bugzilla instance for every change to the source
code [10,23,29]. This enabled us to find first-time contributors
via their issue tracker.

RELATED WORK
Von Krogh et al. [37] summarize the state of research on moti-
vations of OSS contributors. Primarily Steinmacher et al. [33]
have researched contribution barriers from different angles.
They also discuss positive aspects of contribution barriers.

Recently, Lee et al. [20] analyzed motivations and entry barri-
ers of newcomers with a survey in a similar methodology as in
this study. They looked at barriers that prevent One-Time code
Contributors from becoming Long-Term code Contributors,
though, and not the initial contribution barriers a newcomers
have to overcome for their first contribution.

Herraiz et al. [15] analyzed the joining scripts of the GNOME
project [36]. They recognized that there are multiple different
ways to join GNOME as a developer. In particular, 7 of 8 ana-
lyzed volunteers joined GNOME adhering the Onion Model
of Joining OSS projects [44]: They first post a message on the
mailing list and only afterwards they report a bug, submit a
source code modification, and eventually gain commit rights
to the VCS. All members of a second group of 12 employ-
ees and university staff members used a different sequence,
starting almost simultaneously with a message in the mailing
list, bug reports, source code submissions, and VCS commits.
However, the results may be seen as debatable, since the raw
data presented in the paper seem to contain exceptions to those
sequences described in their text.

Still, the study shows that OSS projects may have multiple
different joining scripts. It is not entirely clear yet what types
of joining scripts exist and what types of OSS projects have
which joining scripts.

Joining script determine the interaction of newcomers with the
OSS project and therefore which contribution barriers the new-
comers may possibly face. Hence knowledge about joining
scripts allows deductions about which contribution barriers
are relevant in a given OSS project. Even if a contribution
barrier appears in a specific OSS project, it is also unclear as
of yet how strong the impact of each individual contribution
barrier is on each newcomer.

Weiss et al. [40] showed that developers sometimes join OSS
projects in groups: there are cases where multiple developers
that collaborate in one OSS project join another OSS project
together.

Jergensen et al. [18] found evidence that the majority of OSS
developers dedicatedly use the VCS system, and no social
mediums like mailing lists. One explanation they proposed
is that these developers may have socialized in related OSS
projects and therefore were already well-known in the commu-
nity of the OSS project. This indicates that prior exposure to
OSS projects reduces the effect of social contribution barriers.

Bird et al. [2] found that joining an OSS project requires the
acquisition of project-specific skills. This acquisition takes
time. Table 1 shows the median times newcomers need for
their first patch submission and acceptance for the three OSS
projects Bird et al. had analyzed. They also showed that the
motivation to join an OSS project declines over time after the
initial contact. Although the study did not explicitly state this,

Median time after the first email to
the mailing list until . . .

OSS project . . . first patch sub-
mission

. . . first patch accep-
tance

Postgres 2. month 3. month
Apache 2. month 10. month
Python 6. month 13. month

Table 1. Time needed to acquire project-specific skills [2]

consequentially OSS projects that require long naturalization
will gain less new developers.

SURVEY DESIGN
In a previous exploratory survey [12], we asked professional
developers to report about contribution barriers experienced
when working on OSS projects. We based the survey presented
in this article on the exploratory survey, but targeted developers
who had recently joined an OSS project. The survey design
founded on the Tailored Design Method (TDM) [8] with some
adaptations to accommodate to the survey’s circumstances,
especially invitations via email. A previous paper detailed
insights about newcomers motivations gained from the same
survey [13].

The survey targeted developers whose first patch was recently
accepted by one of the OSS project Mozilla or GNOME. We
selected Mozilla and GNOME because their bug-driven devel-
opment allowed us to find all newcomers, as detailed in the
next paragraphs.

A data collection and filtering process, depicted in Figure 1
for Mozilla, selected the participants: Scripts regularly down-
loaded the bug data from Mozilla’s and GNOME’s bug track-
ers. The scripts assigned all accepted patches to developers.
For each developer, the chronologically first acceptance of a
patch indicated the date when this person, by this survey’s
definition, became a developer of the project. Participant can-
didates are those who became developers between April 2013
and October 2013 for Mozilla and between November 2013
and January 2014 for GNOME. Afterwards, two thirds of the
participant candidates had to be filtered out, because they were
employees of Mozilla or the scripts had incorrectly identified
them as first-time contributors. In two more cases, we could
not find a valid email address of the contributor.

After filtering, 190 first-time contributors remained as invi-
tees to answer an online questionnaire. Invitations were sent
at different dates, so the invitees’ memories about their first
patch were still fresh. We contacted the invitees up to three
times via email. The emails included one $2 gift code for
amazon.com for each invitee, according to the TDM. In spirit
of the TDM, the invitation emails varied in appearance: The
first email had a plain text format, the second email had a more
fancy Hypertext Markup Language (HTML) format, and the
third email was plain text again, but signed with a digital cer-
tificate from the University of Duisburg-Essen’s Certification
Authority (CA). Each first email further included a manually
written short summary of the invitee’s first accepted patch to
the project. The summary proved that the invitation is no mass

mailing but a personal invitation. A link to the issue for which
the patch was submitted accompanied the summary. The sur-
vey referred to this specific patch in some of the questions and
the link served as a reminder and clarification which patch the
survey was referring to – this ensured that the selection proce-
dure had correctly identified the first patch and also clarified
cases where it is not immediately clear to the invitee which
patch was the first.

A total of 97 Mozilla contributors and 31 GNOME contrib-
utors responded to the survey. 6 Mozilla respondents and 5
GNOME respondents were filtered out, mostly because they
had answered only very few questions. The 91 and 26 use-
ful responses out of 132 and 48 invitations for Mozilla and
GNOME, respectively, results in a response rate of 68.8 %
and 54.2 %, in total exactly 65 %. This response rate is within
the typical range of well-designed surveys [8, p. 3f]. More
importantly, the response rate is higher than all other surveys
targeting OSS developers to the best of our knowledge, where
response rates have been at most 38.1 % [1, 14, 19–21, 41, 42].

Occupation
The questionnaire asked the participants about their current
occupation. In terms of occupation, newcomers to Mozilla
and GNOME are surprisingly similar, as Fig. 2 shows. About
49.0 % of the respondents are employees. Mozilla employees
were not invited to the survey, as they do not approach the
OSS project from the outside. However, the questionnaire did
not ask whether employed respondents contributed to the OSS
project during their free-time or whether their contribution was
part of their paid work. The latter group is shown to be about
half of all contributors to OSS projects [30], but not necessarily
half of the newcomers in a given time frame. Another 36.5 %
of the participants are students.

This partition of occupations is similar to results from other
surveys of OSS developers not restricted to newcomers. How-
ever, the ratio of students is higher in this survey: Only 14 %
of Hars and Ou’s respondents from various OSS projects were
students [14]. 23 % of the Linux kernel developers in 2000
were students [16]. 19.5 % of 684 OSS developers working
on projects hosted on SourceForge.net [32] in 2001 were stu-
dents [19]. Of the 1488 OSS developers whom David et al.
surveyed in 2003, 28.8 % were students [5]. A later sample of
148 OSS developers, mainly from SourceForge.net, included
at most 13 % students [41]. In a more recent survey, 13.1 % of
848 R package authors responded that they were students [21].

There are three important differences between the target pop-
ulation of prior research with its lower number of students
among the contributors compared to the participants of this
survey:

First, the existing research is mostly about 10 years older. The
structure of the OSS contributor population may have changed
in the meantime. Future researchers should try to reproduce
these earlier results to decide this hypothesis.

Second, the difference might be a peculiarity of Mozilla and
GNOME. Mozilla employs student programs like Google Sum-
mer of Code [26] and is the subject of some OSS university
courses as answers to other questions in this survey show.

Bugzilla at

bugzilla.mozilla.org

bash and perl

download scripts

About 920,000

downloaded issues

List of 25,890 developers

Bash and Java applications

for transformation

25,446 developers

 with DA < April 2013

68 developers with

DA in April 2013

193 developers with

May < DA < July 2013

68 developers with

DA in August 2013

115 developers with

2013-09 < DA < 2013-10

Sorted by date of first acceptance of a patch (DA)

Manually filtered unsuitable developers (mostly Mozilla employees or erroneous DA calculation)

10 invited

developers

53 invited

developers

22 invited

developers

57 invited

developers

2013-06/

2013-07

6 responses

(60.0 %)

34 responses

(64.2 %)

16 responses

(72.8 %)

41 responses

(71.9 %)

2013-08/

2013-09

2013-10/

2013-11

2013-12/

2014-01

Up to three contacts in ...

Data Trans-

formation

Data

Legend

Figure 1. Data flow for the selection and invitation of survey participants from Mozilla

0

10

20

30

40

50

Employee Self-
employed

Student Un-
employed

Other

Fr
ac

tio
n

of
an

sw
er

s
in

%

Mozilla
GNOME

Figure 2. Occupation of newcomers

However, this cannot explain all of the difference and it does
not explain why GNOME also has a comparably high number
of students. The difference is therefore unlikely to be project-
specific, especially because earlier research confirmed their
results in a wide range of different projects.

Third, this survey targets newcomers while the other research
targets OSS developers in general. There are two explana-
tions of why this difference in group structure should create
a difference in the fraction of students. Firstly, those who
are students on their first contribution may have become em-
ployees after a while and may show up as employees in later
surveys. This would mean that a considerable fraction of de-
velopers choose their OSS projects as students and then stick
with the project. However, Hertel et al.’s participants stayed
with the project only for 17 months on average [16], which
contradicts that contributors stick for a longer time with an
OSS project after they finish their university studies. Secondly,
maybe students contribute only for a short period and then
drop out of the project, while employed contributors stick with
the project after their first contributions. Thus, later samples
of OSS contributors would cover the employed contributors

who are still with the project, but not the students who had left
after their first contributions already. Which, if any, of these
two explanations is correct, should be the subject of future
research.

CONTRIBUTION BARRIERS
As explained initially, the study distinguishes modification and
submission barriers as well as modification and submission
motivations. The questionnaire asked for each of the four
individually, first with an open question and then with a closed
question.

In case of contribution barriers, the closed question prompted
the participants to rate each predefined contribution barrier
on a five-point-scale from “no obstacle at all” to “almost a
show stopper”. The predefined contribution barriers represent
typical steps that a newcomer has to go through.

For each of the two types of motivation, the participants could
pick motivations that applied for them from a list, and put
them into an order that represented the importance of the
selected motivations. Results for the motivation questions
were analyzed in more detail in a previous study [13].

For reasons of brevity, results for the motivation questions
and for the open questions on contribution barriers will not be
discussed here, as only the closed questions were used to test
the research hypothesis.

Modification Barriers
Table 2 lists the answers for modification barriers. Each col-
umn represents a predefined modification barrier. The table
lists how many respondents rated each modification barrier at
each level of importance, where 5 (“almost a show stopper”)
corresponds to the highest and 1 (“no obstacle at all”) to the
lowest importance. The bottom row lists an arithmetic mean
for each modification barrier, calculated by interpreting the
five levels of importance as the numbers 1 to 5.

The modification barrier Find the Code received the great-
est arithmetic mean rank. The large size of Mozilla’s and
GNOME’s code base impede locating the correct place to
modify the source code for a specific change. The second-
most important modification barrier were problems with the
Build of the project. Setup represents “difficulties installing the
development environment”. Interestingly, writing the actual
code for the bug or feature, the Solution of the problem, has a
lower mean rank than the former three modification barriers.
Contrary to the other modification barriers, nobody found the
Solution to be a “show stopper” (rank 5).

Bug Reproduction comprises issues to find inputs on which
the application fails. Respondents seem to underestimate the
danger of Redundant Work, “concerns of wasted modification
effort, as someone else might work on the task in parallel”:
Gousios et al. showed that the reason for 43 % of all patch
rejections on GitHub were redundant work on the same prob-
lem [11]. The modification barrier Download lets participants
rank the “difficulties downloading the right version of the
source code”. The least important modification barrier for the
respondents are problems with Community Support.

Submission Barriers
Analogously to Table 2 for modification barriers, Table 3 lists
the answers to the closed question on submission barriers.
The submission barrier Submission Procedure has a relatively
high mean of 1.980, making it the highest overall contribution
barrier after Find the Code. When only considering the levels
4 and 5, Submission Procedure is ranked even higher than
Find the Code and all other contribution barriers.

This indicates that although the Submission Procedure works
for a considerable fraction of contributors, it is a high contri-
bution barrier for some. Respondents explained high rankings
with difficulties using the VCS in the way the OSS project ex-
pects them to. Partly, this seems to be a matter of personal pref-
erence; one Mozilla newcomer explained that “patch-based
submissions is [sic] a lot of effort compared to pull requests”
as they are common on GitHub. On the other hand, another
newcomer explained the selected importance of 4 with “little
experience with git” used for the Mozilla Webmaker compo-
nent, to which this newcomer had contributed.

With an arithmetic mean rank of 1.710, issues with the Docu-
mentation, called “Instructions on homepage” in the question,
were on par with the modification barrier Solution. The Issue
Tracker was Bugzilla for both projects. Respondents explained
in comments that Bugzilla dictates parts of the submission pro-
cess that was especially difficult. This could also be seen as
an issue of the Submission Procedure. Thus, there are only
minor submissions problems distinctively caused by the Issue
Tracker. “Bureaucracy/Paperwork” are usually not an issue
for the participants. The participants could also rate whether
the “attitude of project members” constitutes a problem for
them. This Member Attitude received the lowest mean of 1.222
among the predefined submission barriers. Three answers in
the category Other were reassigned to Submission Procedure,
as these participants explained their choice with problems
of patch file creation and the VCS, which other respondents
regarded as a problem of the Submission Procedure.

ANALYSIS
According to the initial hypothesis, motivations indicate the
expectations of newcomers, and contribution barriers have a
lower impact on contributors who expect these contribution
barriers. To test this hypothesis, we assigned roles to the
participants depending on their motivation. The questionnaire
included one question for each modification and submission
motivation that let participants select and rank motivations
from a predefined set.

Technology Learners is an example of a motivation role used
for the analysis. Technology Learners are those participants
who ranked learning as the most or second-most important
modification motivation. Each participant can be in multiple
motivation roles. Motivation roles presuppose that the partici-
pants had a specific model about the contribution and that they
should have expected or not expected a particular hurdle in the
contribution procedure.

Technology Learners should have expected that the OSS
project’s technical environment has some intricacies that a
prospective contributor has to overcome – by learning about

Importance Download Setup Build Bug
Repro.

Redundant
Work

Find the
Code

Solution Community Other

5 1 1 1 2 2 2 0 1 1
4 2 8 5 3 3 8 3 1 0
3 7 11 18 7 6 24 13 9 0
2 17 24 23 22 16 29 35 13 1
1 71 54 48 57 65 36 47 69 70

Mean 1.418 1.755 1.821 1.582 1.489 2.101 1.714 1.409 1.069
Table 2. Number of answers for each level of difficulty and modification barrier in the closed questions for modification barriers

Importance Submission Pro-
cedure

Documentation Issue Tracker Bureaucracy Member Atti-
tude

Other

5 4 0 0 1 2 0
4 6 6 1 2 0 0
3 21 12 11 6 1 0
2 22 24 24 13 12 1
1 47 51 62 65 84 63

Mean 1.980 1.710 1.500 1.402 1.222 1.016
Table 3. Number of answers for each level of difficulty and submission barrier in the closed questions for submission barriers

the OSS project’s technology. These hurdles manifest in con-
tribution barriers that the survey measures. Differences in
perception of these contribution barriers between members
and non-members of a motivation role support the hypothesis,
while a lack of differences opposes it.

Table 4 lists all motivation roles. The second column lists the
number of members and non-members of the motivation role
and which contribution barriers should be lower or greater for
members of the motivation role according to the hypothesis.
The last column lists p-values that result from one-sided t-tests
that test whether the expected difference between members
and non-members of the motivation role exist. For most moti-
vation roles, multiple different contribution barriers are tested
for differences resulting in multiple p-values. Using Wallis’
method of combining p-values from multiple experiments [39],
these p-values are combined into a single p-value for each mo-
tivation role and eventually for the whole comparison.

Each motivation role has a complementary role that comprises
all respondents who are not in the motivation role. The com-
plementary role to Technology Learners comprises the respon-
dents who rejected learning as a modification motivation or
ranked it only third-most important or less. There are 44 Tech-
nology Learners and 50 respondents in their complementary
role. The null hypotheses are: Technology Learners rank the
contribution barriers Setup and Build at least as high as their
complementary role. As the result of t-tests, there is a statisti-
cally significant difference between Technology Learners and
their complementary role for Setup and there is no statistical
significance for Build.

Analogously, the motivation role Joy Programmers includes
those respondents who ranked the joy of programming as their
primary modification motivation. We hypothesize that those
who want to experience the joy of programming know that

programming is a challenge and specifically want to face it.
The differences are only slightly significant (p < 0.1).

Pragmatic Patchers are those respondents who wanted to use
their modification for themselves as their primary or secondary
modification motivation. Pragmatic Patchers supposedly con-
sider patching the application as less effort than a workaround
like using another application, as that would also satisfy their
motivation. Accordingly, they should not expect a high effort
for their contribution. Core contribution barriers like Solution
are obviously necessary for the modification and therefore less
likely to be underestimated; thus, we operationalize the un-
expected effort via the secondary contribution barriers Down-
load, Setup, and Build. However, there are no statistically
significant differences for these contribution barriers.

We wanted to shed light on the lack of differences between
Pragmatic Patchers and their complementary role with a post
hoc analysis. The Strictly Pragmatic Patchers include only
those respondents who ranked Own Need as a primary moti-
vation and not those who ranked it second. The contribution
barriers for the Strictly Pragmatic Patchers were compared
with those of the respondents who saw Own Need as no mo-
tivation at all. This corresponds to two of the three groups
identified in our earlier research on newcomers [13]. Addition-
ally, the post hoc analysis includes the contribution barriers
Find The Code and Solution, as these are among the highest
modification barriers according to the closed question for mod-
ification barriers, and thus are more likely to be the source of
an unexpectedly high modification effort.

Table 5 lists the results for this post-hoc analysis. Just like
the three contribution barriers already tested, Find the Code
and Solution were not significantly different between Prag-
matic Patchers and their complementary role (p=0.7197 and
p=0.2015). The differences between the Strictly Pragmatic
Patchers and those who had no Own Need at all were only

Motivation role Role sizes
(respondent/
complementary)

Contribution barrier Expected Difference p-value

Technology Learners 44/50
Setup < 0.0490∗
Build < 0.2319
Combined 0.0623†

Joy Programmers 35/59
Find the Code < 0.1728
Solution < 0.0518†

Combined 0.0511†

Pragmatic Patchers 29/65

Download > 0.2478
Setup > 0.7426
Build > 0.4598
Combined 0.5517

Community Joiners 36/58 Community Support < 0.0526†

Combined 0.0526†

OSS Learners 42/49

Submission Procedure < 0.2052
Bug Tracker < 0.9671
Bureaucracy < 0.3687
Combined 0.5146

Groups combined 0.0301∗
† significant at α = 0.1
∗ significant at α = 0.05

Table 4. Which motivation roles perceive contribution barriers differently than their complementary roles, as p-value of a one-sided t-test

slightly significant for Download (p=0.08887) and not signifi-
cant for Setup (p=0.2412), Build (p=0.2215), Find the Code
(p=0.1586), and Solution (p=0.1035). However, combining
these p-values using Wallis’ method [39] yields a significant
difference (p=0.04129) between Strictly Pragmatic Patchers
and the respondents without Own Need. This result is even
more outstanding when considering that the roles of Strictly
Pragmatic Patchers and respondents without Own Need were
smaller than Pragmatic Patchers and their complementary role:
Although statistical tests generally yield lower p-values for
larger groups if an effect exists, Strictly Pragmatic Patchers
still show statistically detectable differences to respondents
without Own Need. This indicates that the a priori differen-
tiation between Pragmatic Patchers and their complementary
role did not very well match real differentiations between mo-
tivation roles of contributors. Strictly Pragmatic Patchers and
respondents without Own Need better characterize motivation
roles than Pragmatic Patchers and their complementary role.

We call those respondents who ranked contact with the commu-
nity as a modification motivation on first or second Community
Joiners. Community Joiners expect social interaction with the
community of the OSS project. They want to get in contact not
purely because of an immediate need, instead social contacts
have value for them in their own right. Their complementary
role on the other hand may find it unexpected if it is necessary
to get in touch with multiple members of the community in
order to modify code and submit the code change.

OSS Learners are the respondents whose first or second sub-
mission motivation was learning. This is different to learning

as modification motivation in the definition of Technology
Learners. OSS Learners know that each OSS project has its
own processes and its own culture, because their motivation is
to learn about these specifics. They supposedly expect submis-
sion effort and therefore do not experience it as a submission
barrier. However, neither of the three submission barriers
Submission Procedure, Bug Tracker, and Bureaucracy show
statistically significant differences between OSS Learners and
their complementary role. Possibly, both knew about and ex-
pect the efforts of the submission, but only the former saw it
as a motivation for submission, while the latter just found it to
be a necessary task.

In summary, we analyzed five motivation roles, three of which
had statistically slightly significant differences. The remaining
two motivation roles Pragmatic Patchers and OSS Learners
showed no statistical significant differences. However, a post
hoc analysis revealed that adapting the motivation role of
Pragmatic Patchers to Strictly Pragmatic Patchers yields a
significant difference. The results for the five motivation roles,
excluding the post hoc analysis of Strictly Pragmatic Patchers,
combine into a p-value of 0.0301 using Wallis’ method [39].
This result supports the initial hypothesis that contribution
barriers are less important for contributors whose motivations
suggest that they had expected them.

A NEW MODEL FOR JOINING OSS PROJECTS
The overall impact of all contribution barriers on a newcomer
is determined by which contribution barriers occur and their
individual impact. Both factors can be assessed individually:

Motivation role Role sizes
(respondent/
complementary)

Contribution barrier Expected Difference p-value

Pragmatic Patchers 29/65 Find the Code > 0.7197
Solution > 0.2015

Strictly Pragmatic Patchers 23/30

Download > 0.0888†

Setup > 0.2412
Build > 0.2215
Find the Code > 0.1586
Solution > 0.1035
Combined 0.0412∗

† significant at α = 0.1
∗ significant at α = 0.05

Table 5. Post hoc analysis of Strictly Pragmatic Patchers with p-values of one-sided t-tests

First, which contribution barriers take effect? Von Krogh et al.
argued that newcomers have to adhere a specific process
called the joining script to become co-developers of an OSS
project [38]. Jensen and Scacchi noted that there are differ-
ent joining scripts in an OSS project [17]. Herraiz et al. [15]
specifically showed that GNOME employs at least two joining
scripts. Moreover, volunteer developers of GNOME use one
joining script while employed developers use another. Since
every joining script comes with its own steps and tasks, the
joining script defines which contribution barriers are in effect.

Second, what is the impact of each contribution barrier? All
newcomers have their own mental model of the OSS project.
The mental model determines the impact of each individual
contribution barrier. If newcomers need more time to carry
out a task, this amplifies contribution barriers that come with
the task, but it is more important whether the newcomers
expect the task. As shown in the Analysis, the mental model
influences motivations and thus motivations are indicators of
the mental model.

Social properties of newcomers influence both factors. For
example, learning is an important motivation for students. For
Technology Learners, the modification barriers for setting up
a development environment have less impact. Students are
volunteer developers and therefore advance slowly through
supporting roles in the OSS project before they contribute
code [15]. Barriers that hinder non-code contributions would
therefore indirectly hinder code contributions from students.

The consequences of this insight on the management of each
OSS project depends on the project’s goals. It could be rea-
sonable to lower particularly those contribution barriers that
strongly affect the contributors from social groups most at-
tracted by the OSS project. This would maximize developer
influx. Inversely, an OSS project might increase attractiveness
for contributors of social groups that the OSS project has low
contribution barriers already.

Section Occupation discusses evidence that some social groups
like non-students stay longer with an OSS project than others.
Lowering contribution barriers for those who contribute to the
OSS project over a long period may be desirable.

Another approach would be lowering contribution barriers for
underrepresented social groups. This would diversify the OSS
project’s group of developers and thereby help to implement
requirements of users belonging to the previously underrepre-
sented social groups.

THREATS TO VALIDITY
This section discusses different types of threats to the survey
and how the survey set-up ensured validity in spite of these
threats.

Incomprehensible or ambiguous questions endanger construct
validity, as the participants’ answers would not fit to the ques-
tions. However, both the exploratory and the main survey re-
ceived thorough pretests and the first participants were invited
only after the pretesters had not misunderstood any question.
The participants’ answers also showed few signs of misun-
derstanding and those were discussed in the description of
results.

The analysis frequently uses t-tests on scores from ordinal
scales similar to Likert scales to prove or disprove statisti-
cal hypotheses. t-tests require normally distributed variables,
which is never the case for Likert scores. Nevertheless, the
t-test is robust to minor violations to its requirements [28] and
works well especially with Likert scores [7].

There may be a self-selection bias, as the set of survey invi-
tees and survey participants are not identical. However, the
response rate of 65 % is high for a survey [8, p. 3f], which
reduces the likelihood of a self-selection bias.

Both Mozilla and GNOME are very successful OSS projects.
As the success of an OSS project depends on the project’s
ability to gain new developers [3, 43], both GNOME and
Mozilla supposedly have a relatively low level of contribution
barriers. Other OSS projects may have a generally higher level
of contribution barriers.

Furthermore, each OSS project’s community structure is dif-
ferent. The results of this survey depend on Mozilla’s and
GNOME’s recruiting strategies, governance, and possibly spe-
cific events in Mozilla and GNOME during the study period.

This is not so much of a threat against the new model for join-
ing OSS projects, though: We constructed the Theory from
previous results and then picked two OSS projects, which
provided evidence for the truth of the theory, without any evi-
dence in advance that these two specific OSS projects would
be different than others in regards to the theory.

CONCLUSION
Based on the Theory of Dissonance [9], we hypothesized
that contribution barriers would impact those newcomers to
OSS projects stronger that do not expect them. Whether a
newcomer expects a contribution barrier would show up in
the newcomer’s motivation for the contribution, as both ex-
pectancy and motivation derives from the newcomer’s mental
model about the OSS project.

With a web-based survey of 117 newcomers to the OSS
projects Mozilla and GNOME, we collected data about the
effect of contribution barriers on newcomers and their contrib-
utor motivations. These data allowed a statistical analysis of
the hypothesis. The results confirmed the hypothesis.

This lead to a new model of joining OSS projects linking
social groups of newcomers, motivations, and contribution
barriers. OSS projects may adapt their joining scripts to the
social groups they want as contributors.

REFERENCES
1. Hind Benbya and Nassim Belbaly. 2010. Understanding

Developers’ Motives in Open Source Projects: A
Multi-Theoretical Framework. Communications of the
AIS 27 (Jan. 2010), 589–610.

2. Christian Bird, Alex Gourley, Premkumar Devanbu,
Anand Swaminathan, and Greta Hsu. 2007. Open
Borders? Immigration in Open Source Projects. In
Mining Software Repositories, 2007. ICSE Workshops
MSR ’07. Fourth International Workshop on. 6.

3. Andrea Capiluppi and Martin Michlmayr. 2007. From the
Cathedral to the Bazaar: An Empirical Study of the
Lifecycle of Volunteer Community Projects. In OSS2007:
Open Source Development, Adoption and Innovation
(IFIP 2.13), Vol. 234/2007. Springer, 31 – 44.

4. Indushobha Chengalur-Smith, Anna Sidorova, and
Sherae L. Daniel. 2010. Sustainability of Free/Libre
Open Source Projects: A Longitudinal Study. Journal of
the Association for Information Systems 11, 11 (Nov.
2010), 657–683.

5. Paul A. David, Andrew H. Waterman, and Seema Arora.
2003. FLOSS-US – The Free/Libre & Open Source
Software Survey for 2003. (Sept. 2003).
http://www-siepr.stanford.edu/programs/OpenSoftware_

David/FLOSS-US-Report.pdf [accessed 2017-03-27].
6. Miguel de Icaza. 1997. The GNOME Desktop project.

email to the GTK mailing list. (Aug. 1997). https://mail.
gnome.org/archives/gtk-list/1997-August/msg00123.html

[accessed 2017-03-23].
7. Joost C. F. de Winter and Dimitria Dodou. 2010.

Five-Point Likert Items: t test versus
Mann-Whitney-Wilcoxon. Practical Assessment,
Research & Evaluation 15, 11 (Oct. 2010), 1–16.

8. Don A. Dillman. 1999. Mail and Internet Surveys: The
Tailored Design Method. Wiley.

9. Leon Festinger. 1957. A Theory of Cognitive Dissonance.
Stanford University Press.

10. GNOME Wiki. 2015. Community. (Dec. 2015).
https://wiki.gnome.org/Community [accessed
2017-03-23].

11. Georgios Gousios, Martin Pinzger, and Arie van Deursen.
2014. An Exploratory Study of the Pull-based Software
Development Model. In Proceedings of the 36th
International Conference on Software Engineering. ACM,
New York, NY, USA, 345–355.

12. Christoph Hannebauer, Matthias Book, and Volker Gruhn.
2014. An Exploratory Study of Contribution Barriers
Experienced by Newcomers to Open Source Software
Projects. In Proceedings of the 1st International
Workshop on CrowdSourcing in Software Engineering.
ACM, New York, NY, USA, 11–14.

13. Christoph Hannebauer and Volker Gruhn. 2016.
Motivation of Newcomers to FLOSS Projects. In
Proceedings of the 12th International Symposium on
Open Collaboration (OpenSym 2016). ACM.

14. A. Hars and Shaosong Ou. 2001. Working for free?
Motivations of participating in open source projects. In
System Sciences, 2001. Proceedings of the 34th Annual
Hawaii International Conference on. 1–9.

15. Israel Herraiz, Gregorio Robles, Juan José Amor, Teófilo
Romera, and Jesús M. González Barahona. 2006. The
Processes of Joining in Global Distributed Software
Projects. In Proceedings of the 2006 International
Workshop on Global Software Development for the
Practitioner. ACM, New York, NY, USA, 27–33.

16. Guido Hertel, Sven Niedner, and Stefanie Herrmann.
2003. Motivation of software developers in Open Source
projects: an Internet-based survey of contributors to the
Linux kernel. Research Policy 32, 7 (2003), 1159–1177.
Open Source Software Development.

17. Chris Jensen and Walt Scacchi. 2007. Role Migration and
Advancement Processes in OSSD Projects: A
Comparative Case Study. In 29th International
Conference on Software Engineering. IEEE Computer
Society, Los Alamitos, CA, USA, 364–374.

18. Corey Jergensen, Anita Sarma, and Patrick Wagstrom.
2011. The Onion Patch: Migration in Open Source
Ecosystems. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE ’11).
ACM, New York, NY, USA, 70–80.

19. Karim Lakhani and Robert Wolf. 2005. Perspectives on
Free and Open Source Software. MIT Press, Cambridge,
Chapter Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software
Projects., 1–27.

http://www-siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
http://www-siepr.stanford.edu/programs/OpenSoftware_David/FLOSS-US-Report.pdf
https://mail.gnome.org/archives/gtk-list/1997-August/msg00123.html
https://mail.gnome.org/archives/gtk-list/1997-August/msg00123.html
https://wiki.gnome.org/Community

20. Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu.
2017. Understanding the Impressions, Motivations, and
Barriers of One Time Code Contributors to FLOSS
Projects: A Survey. In Proceedings of the 39th
International Conference on Software Engineering (ICSE
’17). IEEE Press, Piscataway, NJ, USA, 187–197.

21. Patrick Mair, Eva Hofmann, Kathrin Gruber, Reinhold
Hatzinger, Achim Zeileis, and Kurt Hornik. 2015.
Motivation, values, and work design as drivers of
participation in the R open source project for statistical
computing. Proceedings of the National Academy of
Sciences (2015).

22. Mozilla Developer Network. 2016. Build Instructions.
(June 2016). https://developer.mozilla.org/en-US/docs/
Mozilla/Developer_guide/Build_Instructions [accessed
2017-03-23].

23. Mozilla Developer Network. 2017. How to Submit a
Patch (Preparation). (Jan. 2017).
https://developer.mozilla.org/en-US/docs/Mozilla/

Developer_guide/How_to_Submit_a_Patch#Preparation

[accessed 2017-03-23].

24. Mozilla Foundation. 2001. Bugzilla@Mozilla. (Aug.
2001). https://bugzilla.mozilla.org [accessed
2017-03-23].

25. Mozilla Wiki. 2015. Modules. (May 2015).
https://wiki.mozilla.org/Modules [accessed
2017-03-23].

26. Mozilla Wiki. 2017. SummerOfCode. (March 2017).
https://wiki.mozilla.org/SummerOfCode [accessed
2017-03-23].

27. Netscape Communications Corporation. 1998. Netscape
Announces mozilla.org, a Dedicated Team and Web Site
Supporting Development of Free Client Source Code.
(Feb. 1998).
http://wp.netscape.com/newsref/pr/newsrelease577.html

[original, broken],
https://web.archive.org/web/20021004080737/wp.

netscape.com/newsref/pr/newsrelease577.html [Internet
Archive, accessed 2017-03-23].

28. Geoff Norman. 2010. Likert scales, levels of
measurement and the “laws” of statistics. Advances in
Health Sciences Education 15, 5 (2010), 625–632.

29. Christian Robotoom Reis and Renata Pontin de
Mattos Fortes. 2002. An Overview of the Software
Engineering Process and Tools in the Mozilla Project. In
Proceedings of the Open Source Software Development
Workshop. 155–175.

30. Dirk Riehle, Philipp Riemer, Carsten Kolassa, and
Michael Schmidt. 2014. Paid vs. Volunteer Work in Open
Source. In Proceedings of the 47th Annual Hawaii
International Conference on System Sciences. Computer
Society Press.

31. Sonali K. Shah. 2006. Motivation, Governance, and the
Viability of Hybrid Forms in Open Source Software
Development. Management Science 52, 7 (2006),
1000–1014.

32. Slashdot Media. 2017. SourceForge Website. (March
2017). https://sourceforge.net [accessed 2017-03-23].

33. Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa,
and David Redmiles. 2015. Social Barriers Faced by
Newcomers Placing Their First Contribution in Open
Source Software Projects. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative
Work & Social Computing (CSCW ’15). ACM, New York,
NY, USA, 1379–1392.

34. Igor Steinmacher, Marco Aurélio Gerosa, and David F.
Redmiles. 2014. Attracting, Onboarding, and Retaining
Newcomer Developers in Open Source Software Projects.
In Workshop: Global Software Development in a CSCW
Perspective.

35. The GNOME Project. 2017a. GNOME Bugzilla. (March
2017). https://bugzilla.gnome.org/ [accessed
2017-03-23].

36. The GNOME Project. 2017b. GNOME Website. (March
2017). https://www.gnome.org/ [accessed 2017-03-23].

37. Georg von Krogh, Stefan Haefliger, Sebastian Spaeth,
and Martin W. Wallin. 2012. Carrots and Rainbows:
Motivation and Social Practice in Open Source Software
Development. MIS Quarterly 36, 2 (2012).

38. Georg von Krogh, Sebastian Spaeth, and Karim R.
Lakhani. 2003. Community, Joining, and Specialization
in Open Source Software Innovation: A Case Study.
Research Policy 32, 7 (July 2003), 1217–1241.

39. W Allen Wallis. 1942. Compounding probabilities from
independent significance tests. Econometrica, Journal of
the Econometric Society 10, 3/4 (July - Oct. 1942),
229–248.

40. Michael Weiss, Gabriella Moroiu, and Ping Zhao. 2006.
Evolution of Open Source Communities. In OSS2006:
Open Source Systems (IFIP 2.13). Springer, 21 – 32.

41. Chorng-Guang Wu, James H. Gerlach, and Clifford E.
Young. 2007. An empirical analysis of open source
software developers’ motivations and continuance
intentions. Information & Management 44, 3 (2007),
253–262.

42. Bo Xu, Donald R. Jones, and Bingjia Shao. 2009.
Volunteers’ involvement in online community based
software development. Information & Management 46, 3
(2009), 151 – 158.

43. Jin Xu, Yongqin Gao, S. Christley, and G. Madey. 2005.
A Topological Analysis of the Open Souce Software
Development Community. In System Sciences, 2005.
HICSS ’05. Proceedings of the 38th Annual Hawaii
International Conference on. 198a–198a.

44. Yunwen Ye and Kouichi Kishida. 2003. Toward an
understanding of the motivation of open source software
developers. In Proceedings of the 25th International
Conference on Software Engineering. 419–429.

https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/How_to_Submit_a_Patch#Preparation
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/How_to_Submit_a_Patch#Preparation
https://bugzilla.mozilla.org
https://wiki.mozilla.org/Modules
https://wiki.mozilla.org/SummerOfCode
http://wp.netscape.com/newsref/pr/newsrelease577.html
https://web.archive.org/web/20021004080737/wp.netscape.com/newsref/pr/newsrelease577.html
https://web.archive.org/web/20021004080737/wp.netscape.com/newsref/pr/newsrelease577.html
https://sourceforge.net
https://bugzilla.gnome.org/
https://www.gnome.org/

	Introduction
	Motivations and Contribution Barriers
	Definition of Terms
	The OSS Projects Mozilla and GNOME

	Related Work
	Survey Design
	Occupation

	Contribution Barriers
	Modification Barriers
	Submission Barriers

	Analysis
	A New Model for Joining OSS Projects
	Threats to Validity
	Conclusion
	References

