
Scenario Based Prototyping – When Open Source
meets the Video Star

Paidi O’Raghallaigh

INFANT Research

Centre, UCC
Cork, Ireland

P.OReilly@ucc.ie

 Frédéric Adam

Cork University

Business School, UCC
Cork, Ireland

FAdam@ucc.ie

ABSTRACT

Prototyping is crucial to the success of Information Systems

Development (ISD) projects, especially those of a more

equivocal nature. Prototyping efforts face inherent tensions

between the need for producing high-fidelity complex

prototypes and producing them quickly and at low cost.

This paper describes how a number of ISD teams focused

on stitching together relatively low-cost high-fidelity

prototypes through the loose assembly of pre-existing open

source software (OSS) components. Video recordings were

captured of the role playing use of these prototypes by

realistic persona in realistic scenarios. These videos were

replayed to stakeholders in order to provoke a response and

to capture their rich insights. We use the acronym OSP to

represent this method of Open Source Scenario-Based

Prototyping. Based on observations of the activities of these

teams, the paper is in a position to describe a high level

method for producing OSPs.

Author Keywords

Open Source Software, ISD; Prototyping; Rapid

Prototyping; Video Prototyping; Patchwork Prototyping.

ACM Classification Keywords

H.1.1 [Information Systems]: Systems and Information

Theory.

INTRODUCTION

The goal of prototyping is to assist in exploring the design

space consisting of the many possible solutions to a given

problem. Prototyping is increasingly viewed as crucial to

the success of Information Systems Development (ISD)

projects, especially those of a more equivocal nature. The

goal of rapid prototyping is to develop a prototype in a

fraction of the time that it would take to develop a working

system and to learn as much as possible and as quickly as

possible from the prototype. These lessons can then be built

into a further version of the prototype. This process can be

repeated in order to reduce the likelihood of arriving at a

solution that does not meet the needs of the stakeholders.

Rapid prototyping can, therefore, result in considerable

time and cost savings as well as reduce the risk of

ineffective project deliverables. While the rapid production

of low-cost high-fidelity prototypes has long been the Holy

Grail of ISD [1], it remains elusive. In addition, while

scenarios-based methods have long been advocated as a

means of improving outcomes in ISD [2], scenario-based

prototyping remains underutilised. The method described

here has emerged from participating on a number of

challenging ISD projects that were project managed by the

lead author. The ISD teams in each of these projects

focused on stitching together relatively low-cost high-

fidelity prototypes through the loose assembly of pre-

existing open source software (OSS) components. Video

recordings were captured of the role playing use of these

prototypes by realistic persona in realistic scenarios. These

videos were replayed to stakeholders in order to provoke a

response and to capture their rich insights.

We use the acronym OSP to represent this method of Open

Source Scenario-Based Prototyping. OSP can be described

as a general method of scenario-based prototyping in ISD

projects. The use of open source software (OSS) is a critical

element of the method. It has been found to be particularly

effective when used during resource constrained projects

where there are high levels of equivocality. The objective of

this paper is therefore to: (1) Position OSP relative to other

related forms of prototyping; (2) Present a high level

method for undertaking OSP; and (3) Outline some of the

benefits and limitations of OSP.

The next section provides some background to the concept

of prototyping and presents two particular prototyping

approaches (i.e. patchwork prototyping and video

prototyping) related to OSP.

BACKGROUND TO PROTOTYPING

Dimensions such as form (physical versus abstract), fidelity

(high-fidelity versus low-fidelity), scope (horizontal versus

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

OpenSym '17 Companion, August 23–25, 2017, Galway, Ireland

© 2017 Copyright is held by the owner/author(s). Publication
rights licensed to ACM.

ACM ISBN 978-1-4503-5417-2/17/08…$15.00
https://doi.org/10.1145/3126673.3126678

mailto:P.OReilly@ucc.ie
mailto:FAdam@ucc.ie
mailto:Permissions@acm.org

vertical) and interactivity (dynamic versus static) can be a

useful way of categorising the different types of prototypes

used in practice. These categorisations can also help in

understanding the trade-offs involved in picking one

prototyping approach over another [1].

In terms of form (or representation), prototypes range from

less-evolved forms (such as pencil and paper drawn

concepts) to more evolved-forms (such as coded software

components). Less-evolved forms of prototypes are

relatively quick and inexpensive to produce but they do not

support real interactions. On the other hand, more-evolved

forms of prototypes are slower and more expensive to

produce but can support real interactions. They are,

therefore, suited to generating complex insights that come

from observing actual use of the prototypes.

Another dimension is fidelity (or precision). Fidelity refers

to the level of detail or accuracy of the prototype relative to

the final solution. Low-fidelity prototypes are quicker and

cheaper to produce but can be limited in their power to

generate insights as the stakeholders may have difficulty

imagining how the final solution will look, how it will

work, how they might use it, or what it will do for them. On

the other hand, high-fidelity prototypes are slower and more

expensive to produce but leave little to the imagination.

A further dimension is scope (or extent). Horizontal

prototypes encompass a wide breadth of functionality

required from a solution. They are, however, shallow in that

they only show particular layers (usually the user interface)

of functionality. This helps “… both the user and the

programmer understand the breadth of the system without

plumbing its depths” [3]. Vertical prototypes, on the other

hand, take a narrow slice of the functionality required from

a solution and explore it in depth through each layer (from

the user interface right through to the system layer) of

functionality. This allows users to interact fully with a

limited piece of functionality. Task-oriented prototypes

provide the functionality to perform a single task or a series

of tasks [4]. Scenario-based prototypes are similar to task-

oriented ones, except that they provide the functionality to

support a more realistic real world scenario in a real-world

setting [4].

A final dimension is interactivity. Interactivity represents

the extent to which the prototype can be interacted with.

For example some prototypes are static and can be

observed, whereas others are dynamic and can be interacted

with. Static prototypes are likely to be quicker and cheaper

to produce but are unlikely to generate complex insights

that come from observing the prototypes in use. On the

other hand, dynamic prototypes are slower and more

expensive to produce but can generate complex insights

from observing them in use.

Patchwork Prototyping

A challenging question for many ISD projects is whether to

build (their own proprietary software), buy (commercial off

the shelf software), adopt (open source software), or use a

mix of these approaches. Regardless of what decision is

made, OSS can play a role in the prototyping efforts of the

projects. For example, even if the decision is made to build

or buy a solution, OSS can be used to build prototypes to

gather insights that inform the requirements for that

solution. This nuanced role is largely ignored in the

practitioner and academic literature.

Patchwork prototyping is “…the combining of open source

software applications to rapidly create a rudimentary but

fully functional prototype that can be used and hence

evaluated in real-life situations” [3]. The OSS components

can be stitched together because the code is open ,

accessible, and modifiable. Furthermore, the individual

components are disposable since they can easily be

discarded and replaced with others. It is advocated as “…a

rapid prototyping approach … that shares the advantages

of speed and low cost with paper prototypes, breadth of

scope with horizontal prototypes, and depth and high

functionality with vertical, high-fidelity prototypes” [3].

The prototypes are released into the real environment and

are used by stakeholders in their daily activities.

Because of their form, fidelity, scope, and interactivity

patchwork prototypes can help stakeholders to see the

breadth and depth of a solution without having to depend on

their imaginations. They can, therefore, capture more

realistic and informed insights that emerge from observing

stakeholders interacting with the prototypes. They are

especially useful in exploring ill-defined design contexts

[3]. The patchwork prototyping approach is not, however,

without some limitations. The patching efforts require the

input of highly skilled programmers that must have

experience with the development tools used to create the

OSS components. Also, the OSS components can have

security vulnerabilities that can compromise the servers on

which the prototypes are hosted.

Video Prototyping

Video prototypes utilise video recordings as a mean of

illustrating how users will interact with a solution [5].

Video prototyping uses paper prototypes or cardboard

mock-ups to simulate the solution. The video recordings are

organized around scenarios that illustrate how people might

interact with the solution in realistic settings. The video

storyline leverages a number of design artefacts (such as

personas, scenarios, and storyboards) created earlier in the

design process. For example, the design scenario acts as the

foundation demonstrating how real people would interact

with the solution in a realistic setting. The people in the

scenario are represented as personas , whose characteristics

are drawn from interviews and observations.

Some video prototypes use a narrator or voice over, others

use title cards to explain what the personas are doing, either

through natural dialog or through a ‘talk aloud’ procedure

[5]. In the past, to produce a video might have required

design teams to hire audio visual experts but this is no

longer the case with the availability of free, low cost, and

open source video editing software, which is relatively easy

to use even by non-experts. Video prototyping is , therefore,

becoming a feasible and viable option for prototyping.

THE OSP METHOD

The OSP method entails the following steps, which are

executed in an iterative fashion:

 Create the vision for the solution i.e. what benefits it is

looking to create.

 Identify the OSS components required to backbone a

prototype of the solution.

 Integrate, customise and configure the identified OSS

components.

 Identify the scenarios and the personas for the video.

 Create a storyboard from the scenarios and personas .

 Produce and stitch together the required video clips.

 Deploy the video and solicit feedback from users;

The steps do not need to be executed in this exact sequence.

An iteration can be performed in a matter of hours or days.

Create the vision for the solution

The stakeholders meet and they set out to create a cohesive

vision for what the proposed solution is hoping to achieve.

The team utilise innovation games, such as the billboard

and the product box design games. Using these games, the

team creates replicas of a physical billboard and a product

box that presents the essence of their solution (in terms of a

name, tagline, benefits and features). The product box is a

more detailed version of the billboard. Both games are

relevant even though the final solution may not require a

billboard or a box. By imagining the marketing copy and

packaging for their solution, the team is required to make

decisions about important aspects of their vision that may

otherwise be difficult to articulate. The team uses these

outputs to market their vision to the larger stakeholder

group and also to serve as a reminder of the bar they have

to rise above in order to build the solution. This vision

anchors all further decisions that need to be made in the

OSP method.

Identify the OSS Components

The proliferation of production-scale OSS has increased to

the extent that some observers are now suggesting that

“Open Source is eating the Software World”. OSS provides

a vast repository of reliable, robust, usable, and feature-rich

software. OSS options now span the full technology stack

from applications to operating systems, platforms, and even

hardware. OSS also includes a wide spread of applications

for different functions (e.g. engineering, sales, marketing)

and different domains (e.g. health, education, finance). The

focus of the team here is on identifying OSS applications

that can prototype the high-level benefits and required

functionality identified in the previous step. Other than the

required functionality, examples of other criteria used in

selecting the appropriate OSS applications, might include:

underlying technologies used to build the applications and

the vibrancy of the community supporting the applications .

Integrate, customise and configure the OSS
components

The decision to be made here is to maximise the functional

fit while reducing the amount of coding work. Shallow

integration is preferred over deep integration. Configuration

is preferred over customisation. The key is to have

components that provide high levels of functionality and

that support high degree of configuration, whereby many

features can be easily turned on and off. These settings can

be used to alter the presentation of the application as well as

altering aspects of its security and functionality. As we will

see in a later step, the illusion of integration can be

performed by stitching video clips together and this does

not always require the code bases of the individual

components to be integrated.

Identify the scenarios and personas

Scenarios and personas are used by the team in order to

represent the people and the situations in which the solution

will be used. They are important design inputs that assist

with building understanding and empathy in the team for

the people and situations that the solution is being designed

for. The scenarios and personas illustrate how the solution

and its set of features will be used by a realistic character in

a realistic setting. The scenario must identify who is

involved, where the activities take place, and what the user

does over a specified period of time.

Create a storyboard for the video

Once the scenarios and personas are identified and

described, the team develops storyboards. A storyboard is

created to demonstrate the use of a solution in a specific

scenario. The storyboard breaks down the scenario to show

a sequence of rough sketches illustrating each event and the

corresponding actions that will end up as clips in the video.

The storyboard works best if it shows the scenario through

the eyes and actions of a single persona. The storyboard is

an important bridge between the scenarios created in the

previous step and the video clips to be shot in the next step.

The storyboard not only guides how the interaction will be

shot but also to encourage the team to think more

specifically about just how the solution needs to support the

required interactions.

Record and stitch together the video

Once the storyboard is created, the team converts it into

simple video clips (such as a person representing a persona

using an app) with a voice over to explain what is

happening. The illusion of integration across steps and

components can be performed by stitching video clips

together. Therefore the separate OSS components are

integrated through video editing rather than through coding.

Each video clip can capture the use of a disparate

component. The video clips are then stitched together to

makes it look like the user, data, and control is passing

seamlessly from one component to another.

The next section offers insights into some of the benefits

and limitations of using OSP.

BENEFITS OF OSP

By utilising pre-existing OSS components, OSP prototypes

are relatively cheap and quick to build or modify, and they

are high fidelity. Due to their loose integration, they require

less technical and programming expertise than patchwork

prototypes. The underlying OSS components can be

‘integrated’ by stitching together video clips rather than

code bases. In some situations, they can be modified using

configuration settings rather than requiring any

programming effort. In addition, the videos show how users

will interact with the solution in a given context. This

facilitates the gathering of deep insights.

LIMITATIONS OF OSP

Unlike paper and pencil prototyping that can be done by

almost anyone, OSP does require some technical skills in

terms of installing, configuring and possibly customising

the OSS components. The visual coherence of patchwork

prototypes can instil a belief among stakeholders that the

solution is almost complete [3]. A similar outcome has been

noted with the use of OSP and the premature raising of

‘false hopes’ about the time and resources required to

complete the solution. Stakeholders view the OSP as almost

finished due to the fact that the video demonstrates a

functional piece of software being used by a ‘real’ user in a

‘real’ context. This can result in stakeholders focusing on

small design details rather than the overall question of the

appropriateness of the solution [6]. The process can

therefore get side-tracked into questions of how the solution

should look rather than questions of appropriateness i.e.

what it should do and how it should do it. In addition the

video recording can represent a normative view [c.f. 6] of

how the solution should be used and it typically shows

flawless execution of interaction tasks. Unfortunately, the

stakeholders observing the video do not typically get the

opportunity of reporting on their actual use of the solution

and on their actual experiences with the solution. Instead

their views are based on how they imagine they would use

the same solution in the same or a different context to that

presented in the video.

COMPARISON OF APPROACHES

The Table below compares OSP to the other types of

prototyping previously discussed in this paper. As we can

see OSP combines attributes of both patchwork prototyping

and video prototyping but also differs in some regards.

Similar to patchwork prototyping, OSP results in a high

fidelity prototype built from OSS components. Integration,

however, happens mainly at a video presentation level

rather than at a coding level. It, therefore, tends to be

quicker and cheaper than patchwork prototyping. Unlike

patchwork prototyping it is scenario-based and is presented

by way of a recording of a role play. On the other hand

video prototyping is a recording of a role play of a low-

fidelity paper based prototype.

 Patchwork

Prototyping

Video

Prototyping

OSP

Form Digital Paper Digital

Fidelity High Low High

Scope Horizontal-

based

Scenario-

based

Scenario-

based

Interactivity Dynamic Fixed Recorded

Dynamic

Speed of

prototyping

Slow Rapid Fast

Integration At code level At concept

level

At

presentation

level

CONCLUSION

At first glance, patchwork prototyping or OSP does not

require OSS; the same general process could be followed

by using other software. However, OSS provides OSP and

prototyping in general with a number of benefits. High-

profile OSS is often of high quality and it can contain years

of invested design and coding effort that is encapsulated in

it’s codebase. Given that it is built from the collective

experiences of a community, less effective designs have

already been tried, tested and discarded [3]. Additionally,

most OSS has very active development communities who

are willing to provide technical support for the software.

Without open access to OSS source code, developers would

be limited in how well they can patch together different

modules, the features they can enable or disable, and their

ability to integrate components together. All of this

facilitates the rapid production of high-fidelity prototypes at

relatively low cost and little effort [3]. One final point of

note is that through this process, ISD teams appropriate

OSS in a rather different way to what may have been

intended when the software was originally being developed

and possibly in ways in which the community never

expected. Thus, innovation is not only present during the

design and development of OSS but also in its novel use as

we see here [3, 7].

ACKNOWLEDGMENTS

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland

(SFI) under Grant Number SFI/12/RC/2272.

REFERENCES

[1] Floyd, I. R., Jones, M. C., Rathi, D. and Twidale, M. B.

Web mash-ups and patchwork prototyping: User-driven

technological innovation with web 2.0 and open source

software. IEEE, City, 2007.

[2] Sutcliffe, A. G., Maiden, N. A., Minocha, S. and

Manuel, D. Supporting scenario-based requirements

engineering. IEEE Transactions on software engineering ,

24, 12 1998), 1072-1088.

[3] Jones, M. C., Floyd, I. R. and Twidale, M. B. Patchwork

prototyping with open source software. Handbook of

Research on Open Source Software: Technological,

Economic, and2007), 126.

[4] Beaudouin-Lafon, M. and Mackay, W. Prototyping

tools and techniques. Human Computer Interaction-

Development Process2003), 122-142.

[5] Mackay, W. E. Video Prototyping: a technique for

developing hypermedia systems. City, 1988.

[6] Zwinderman, M., Leenheer, R., Shirzad, A.,

Chupriyanov, N., Veugen, G., Zhang, B. and Markopoulos,

P. Using video prototypes for evaluating design concepts

with users: a comparison to usability testing . Springer,

City, 2013.

[7] Thomke, S. and Von Hippel, E. Customers as

innovators: a new way to create value. Harvard Business

Review, 80, 4 2002), 74-85.

