
How are Open Source Practices Possible within a Medical
Diagnostics Company? Developing and Testing a Maturity

Model of Inner Source Implementation
Remo Eckert

University of Bern, Institute of
Information Systems

Bern, Switzerland
remo.eckert@iwi.unibe.ch

Sathya Kay Meyer
University of Bern, Institute of

Information Systems
Bern, Switzerland

sathya.meyer@students.unibe.ch

Matthias Stuermer
University of Bern, Institute of

Information Systems
Bern, Switzerland

matthias.stuermer@iwi.unibe.ch

ABSTRACT
Open Source Software (OSS) development has seen a
considerable increase in attention over the last few years. The
success of various OSS projects, such as Linux and Apache,
is now widely recognized. Many organizations have shown
interest not only in using OSS, but also in applying the
underlying collaborative practices within their internal
software development activities; this phenomenon is known
as Inner Source. By combining best practices of OSS
development from the current Inner Source literature, we
develop a new model that allows us to rate an organization’s
maturity level regarding the adoption of Inner Source. By
testing our model within a medical diagnostics corporation,
we present various insights on Inner Source efforts and how
Inner Source can improve software development.
Author Keywords
Inner Source; Open Source Software; Maturity Model;
Software Development.

ACM Classification Keywords
K.6.3 [Software Management]: Software development.

INTRODUCTION
The success of OSS projects has generated considerable
interest over the last few years. There are various examples,
such as Linux, Apache and several others that bear testament
to this [3]. As a consequence, OSS is also becoming more
popular - mainstream even [5]. Organizations hope to
leverage the numerous advantages of OSS [14], such as the
potential to decrease cost and risk throughout the product
lifecycle and minimizing vendor lock-in [32]. However, the
way software is developed in an OSS community differs
from other forms of software development. Organizations

have adopted OSS development practices to improve their
internal software development process and thereby gaining
efficiency and effectiveness without revealing own source
code. This phenomenon is known as Inner Source, a term
first mentioned in the scientific context by Dinkelacker et al.
[3]. Inner Source promises many advantages, including
organization-wide and immediate access to all project
artifacts and source code; a greater number of releases and
shorter time to market [22, 28]; reusable software
components [22]; as a form of intra-organizational open
innovation [17] and peer-review of contributions through
organization-wide scrutiny [8, 15, 21]. Moreover, Riehle et
al. [20] list several expected benefits when implementing
Inner Source. However, Inner Source also brings a number
of challenges. Dinkelacker et al. [3] distinguish between
organizational and technology infrastructure challenges
faced by organizations implementing Inner Source. Most
organizations have a hierarchical organizational structure,
which complicates the process of sharing code, because it
can be difficult to merge together different product road-
maps and time-lines. Security aspects, such as who can
access the source code and the migration to new tools and
support of those tools need to be targeted [3]. As Inner
Source means openness and transparency, employees may
understand this shift as an attempt by management to gain
more control. They may be concerned that sharing their
source code within the organization may uncover errors and
bad code quality. Thus, a cultural change is needed to
motivate engineers working more open and collaborative
[18]. Each implementation of Inner Source depends on the
specific organizational context [6, 27]. There have been
numerous case studies and observations of firms
implementing Inner Source and the challenges they faced
when doing so. In their study, Stol et al. [28] list several
success stories from case studies conducted at Alcatel-
Lucent, HP, Nokia, Philips and SAP. These studies all list
various challenges faced by the companies during the
implementation.

While the existing literature and case studies on Inner Source
implementation may provide many insights, we find that
they lack a tool to assess the organization’s level of Inner
Source adoption. We see considerable scientific and practical
use in working out characteristics of Inner Source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
OpenSym '17, August 23–25, 2017, Galway, Ireland
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5187-4/17/08…$15.00
https://doi.org/10.1145/3125433.3125447

mailto:Permissions@acm.org
https://doi.org/10.1145/3125433.3125447

implementation based on insights from literature on Inner
Source and OSS and assessing them in the software
development department of a large medical diagnostics
corporation. By creating a maturity model we define what an
organization needs to implement when applying practices of
Inner Source. The goal of this study is to develop a model
which allows the evaluation of an organization’s maturity
level as regards their Inner Source implementation. Our
model shows Inner Source practices derived from the
literature of OSS as well as Inner Source. Applying our
model, an organization can identify context-specific gaps
regarding efforts made in implementing Inner Source and
best practices derived from the literature and practical
experience.

First we provide a literature review on what defines Inner
Source in detail. Second, we describe our research method
and our maturity model of Inner Source implementation.
Third, we describe the results of the applied model within a
large medical diagnostics company. Finally, we elaborate on
the findings in the discussion section.
DEFINING INNER SOURCE
Within the scope of this study, we will refer to Inner Source
as “the leveraging of Open Source Software development
practices within the confines of a corporate environment”
[28]. Unlike OSS projects which intend to make their source
code available on the Internet, organizations wish to protect
their intellectual property rights for competition and patent
reasons [2].

However, a more detailed examination is needed of the
aspect of adopting OSS development practices as described
in the definition. There is no defined list of what these Inner
Source practices are. There are, however, a number of
common practices, which can be found within the literature:
Robbins [23] promotes universal access to all project
artifacts, opening the source code to all project participants
and emphasizing the re-use of software components. Gurbani
et al. [8] highlight the frequent releases and the management
of contributions, Melian and Mähring the transparent
development process [15] and Dinkelacker et al. the peer-
review process [3].

Inner Source is best captured as a philosophy for
decentralized software development, which is based on
practices from OSS communities [29]. Adapting not only the
practices, but also the tools from OSS development appears
to be a straightforward undertaking. Furthermore, universal
access to all development artifacts, such as the IDE and tools,
is a precondition for developers within different business
units being able to contribute to Inner Source. As regards
OSS development tools, Robbins [24] in his study outlines
how the use of OSS tools may also lead to the adoption of
OSS methods. This underlines the importance of adequate
tool usage when implementing Inner Source. Their main
purpose is to complement, support or facilitate the Inner
Source development effort [31]. Common examples of tools
are: code repositories, wikis and issue tracking systems [23,

28], concurrent version control systems [9, 23, 25], a
component reuse platform [16], a collaborative development
program [14] or a software forge [21].

Similar to instances in which an OSS community
collaboratively develops software, an Inner Source project
must get enough people involved to create a favorable
corporate culture [29]. This can be achieved by recognizing
and rewarding collaborative behavior [3]. Universal access
facilitates awareness throughout the entire team and more
detailed knowledge of what people are working on and may
help to improve coordination [10]. A corporate community
will then develop what we call an ‘OSS mentality’. This will
lead to open discussion and transparency [6, 14] and
voluntary contributions to project assets [28].
RESEARCH METHOD
The following section will show how our model was
developed.

Initial Model
We reused some elements of the Capability Maturity Model
of Integration for Development v1.3 (CMMI-DEV). The
CMMI-DEV is a process improvement training and appraisal
program providing guidance on applying best practices in a
software development organization. The 22 process areas of
the CMMI-DEV address the entire development process of
an organization. As we have no intention of evaluating an
organization’s overall software development process, but
rather their specific efforts related to Inner Source, we did
not select any of the 22 process areas defined in the CMMI-
DEV. Instead, our model is rooted to the three critical
dimensions found by the Software Engineering Institute to
be those that organizations typically focus on: People,
Procedures & Methods and Tools & Equipment. These three
dimensions are interrelated [1]. As an example, processes
influence the tools and people involved in an organization
and vice versa [1]. Processes, as stated, allow organizations
to align the way they do business, they hold everything
together. A focus on process provides the infrastructure
necessary to maximize the productivity of people and the use
of technology to be competitive [1].

In the CMMI-DEV, every process area has specific goals, as
well as generic goals. The goals are then specified in greater
detail with specific, generic and sub-practices and example
work outcomes that describe the unique characteristics
necessary to satisfy a process area [1]. This fits the extent of
the CMMI-DEV, but not the scope of this study. In our
model, the three dimensions all comprise a set of questions
which address a practice that should be in place in order to
satisfy a capability level.

A distinction is made in the CMMI-DEV between
continuous and staged representation. Staged representation
is concerned with selecting multiple process areas to
improve; whether or not individual processes are performed
is not the primary focus [1]. For the scope of our model,
continuous representation seemed to fit best as it enables the

organization to choose the focus of its process improvement
efforts by choosing those process areas that best benefit the
organization.

Data Retrieval
A case study allows us to validate our model. Moreover, by
applying our model to a concrete example, the reader of this
case study will gain an insight into every construct upon
which our model is based [4]. To this end, the use of
qualitative methods in the form of semi-structured interviews
will allow us to obtain the necessary insights. The seven
interviews conducted are based on the questions of our
model and are transcribed verbatim and analyzed using
MAXQDA. The interviews were between 25 and 37 minutes
long. Participants were distributed along the various
occupation roles, ranging from Software Engineers to senior
management. The participants’ employment ranges between
three and thirteen years, but the majority had prior work
experience. We used the 32 questions of our main model to
analyze the interviews. Therefore, the model’s dimensions
composed the categories and served as an initial point for the
data analysis. This translated into twelve main categories
(four capability levels for every of the three process areas)
and a total of 32 categories (one for each question within the
model). Further, we analyzed organizational documents
concerning the Inner Source project, as well as policies
governing OSS usage and legal aspects of the license review
within the organization.

The selection of a case is an important aspect in case study
research because the population defines the set of entities
upon which the case study is built [36]. We chose the
organization for two reasons: First, the organization started
to implement Inner Source but is not finished yet. Thus, it
provides an opportunity to analyze the organization
throughout its ongoing process of implementing Inner
Source. Second, the organization develops software globally.
Developers do not necessarily know one another, but work
for the same organization. Therefore, we see a fit to the
theory of Inner Source which often takes place in a globally-
distributed setting where knowledge sharing is seen as an
important factor to speed up processes and innovation [14,
17].
Iteration Process
Our initial model was developed by analyzing literature on
Inner Source; the results of the literature review served as an
interview guideline [30]. Based on this guideline, we
checked whether the model covers all the aspects necessary
to evaluate the organization’s Inner Source endeavor. The
questions left room for the interviewees to talk about their
own personal experiences. In the interviews and document
analysis we found several important aspects around the Inner
Source development practice that were not covered by our
initial model. Furthermore, the data analysis revealed that
some changes in the hierarchy of the questions led to better
and more specific results for the evaluation. These additional
aspects, as well as some changes in the hierarchy, were

incorporated into a modified version of our model. We would
apply the same procedure in future evaluations to allow us to
continuously improve the model described in our paper. As
an example, in our literature-based initial model, Q26 (firm
policy on tools) did not exist. After analyzing the interviews
and documents, we found that such a policy is important
because of legal compliance. It ensures that the risks of OSS
usage within products are properly identified, addressed and
mitigated.
Evaluation and Classification
In order to evaluate and classify an organization’s efforts to
implement Inner Source, we develop an evaluation-method.
For every question, points ranging from zero to four can be
awarded. These points allow us to determine whether or not
a capability level is satisfied. An average of 75% is needed
to satisfy a level. Each question tries to find evidence for the
presence of a certain practice, know-how or tool. The first
two points are awarded if a question can be confirmed i.e. if
know-how, a practice or tool is present. A third point is
awarded if there is plenty of evidence for said practice,
know-how or tool, that is, there are multiple individuals or
examples confirming not only its presence but also its
sophisticated use. The fourth point is awarded when know-
how, a practice, or tool is performed or used to a level which
is comparable to the “best practice” found in the literature
and there is little to no room for further improvement. Two
researchers made the classification separately and discussed
the results.
Brief Description of the Case
The analyzed organization is a world-leading provider of
medical diagnostic system solutions. It develops analysis
systems for laboratory diagnostics and provides global
services and support. The organization develops the
hardware used in the diagnostic instruments, as well as the
software that controls and operates them. The Inner Source
endeavor within the organization is built mainly around an
integrated software platform of reusable components. It is
therefore the core asset base for developing diagnostics
instruments and laboratory information technology
solutions. The goal of the platform is to accelerate product
development with high quality and code re-use. By hosting
many different hardware and software components, the
platform serves as a large scale re-use-platform and aims to
reduce the workload of new software development projects.
The platform provides more than 10 different hardware and
software elements for standalone use and serves as a basis
for future products and projects. As it provides many
different software development kits, such as libraries,
architecture patterns, documentations, codes and wikis, the
platform serves as a collaborative development platform for
many different development teams. Currently, around 70
globally distributed software developers, software architects
and managers are working on the platform.
RESULTS
Each critical dimension and the corresponding capability
levels will now be described in detail.

People Dimension
This dimension focusses on OSS development practices
within an organization. There are practices that take place
either on an individual level or within a community. The goal
of this dimension is to find out how individuals perceive and
live the OSS phenomena within a firm, how they interact
with coworkers and if there is a prospering community to be
found.

A0: Incomplete - This capability level determines the basic
knowledge and understanding of OSS [19]. As implementing
Inner Source entails adopting OSS practices, an
organization’s developers first need a basic understanding of
OSS to successfully adopt Inner Source.

A1: Performed - Inner Source cannot be enforced, it needs
voluntary participation [36] and employees who engage in
the exchange of ideas and information [25, 35]. Such a
culture of exchange cannot be created solely by the
employees and developers. The leadership must be involved
[21] to facilitate and foster open discussion [14].

A2: Managed - A practice of OSS development is its liberal
task selection. In an OSS setting, developers can contribute
to any given development artifact due to the universal access
to the source code [13, 21]. Developers should be able to
contribute or follow other projects than the ones they are
assigned to [9, 14, 28]. The management should support the
company’s Inner Source endeavor and support the OSS
mentality [3, 8, 21]. Increased management support should
induce adequate guidelines and regulations and therefore
culminate in a clear Inner Source strategy [2, 3, 29].

A3: Defined - OSS development is driven by various
motives such as the desire to learn new skills, to create new
features deemed necessary or to enjoy the freedom to
contribute to other projects [33]. To fully utilize the potential
of Inner Source, the goal is to involve as many developers as
possible [21]. Therefore, an Inner Source culture must be
facilitated. To do so, the organization needs long-term goals
and a vision that includes Inner Source [29].
Procedures & Methods Dimension
This dimension integrates procedures and methods which are
oriented around software development, such as requirements
engineering. Procedures and methods that take place through
and within the community - such as collaborative
development and peer-review - are also necessary.

B0: Incomplete - Although requirements elicitation might
differ between OSS development and Inner Source it is
fundamental to an organization how requirements are
gathered. This capability level aims to find out how the
organization gathers requirements. Further, the organization
should provide basic information about OSS to their
employees [9].

B1: Performed - The possibility to review and contribute to
all project artefacts is a fundamental element in OSS projects
[13, 21]. This capability level evaluates whether developers

have read-access to software projects or components within
their organization [14]. Further, developers should also be
able to contribute to projects by sending bug reports and
feature requests [7, 11]. Moreover, an organization should
devote effort into gathering and analyzing (non-functional)
requirements [9, 28]

B2: Managed - Making software components re-usable can
speed up the development process and reduce cost [22]. It
can also increase the number of shared assets within an
organization [28]. Further, this capability level investigates
the extent to which developers have commit access that
allows them to contribute source code [9, 28].

B3: Defined - There should be a process which ensures the
review of proposed features and improvements [27]. Peer-
review is seen as an important OSS practice [8, 15, 27],
because it may provide many useful inputs and uncover
flaws and becomes increasingly effective as more developers
are involved [19]. An organization should also make use of
its established components and pursue large-scale code re-
use [22].
Tools & Equipment Dimension
The third dimension focusses on the technological aspects of
Inner Source and covers the OSS tools and components. The
progression through the levels is based mainly around tools
that support collaboration and development. Because Inner
Source is not a completely new software development
approach and is somewhat related to agile software
development [34], the tools are not unique to Inner Source.

C0: Incomplete - Since developers need to use various tools
in order to adopt OSS development practices, an
organization must allow its use. Because OSS and Inner
Source development are often geographically distributed
[12], this capability level determines the basic conditions for
the use of OSS tools within the organization.

C1: Performed - OSS projects often use code repositories,
wikis, mailing lists and an issue tracking system [7, 23, 28].
Such tools facilitate communication, knowledge-sharing and
provide feedback [28] and are also involved when
developing in an Inner Source setting.

C2: Managed - In order to make contribution easier, a
common set of development tools should be defined [27]. A
firm policy on what tools or components can be used help to
reduce the number of tools and components [26]. A tool
commonly-used in OSS project is a version control system
[23, 27] or change management system [8]. Further, a
component-reuse-platform can help to manage and reuse
components [23].

C3: Defined - A collaborative development environment can
help to enable developers to collaborate organizational-wide
[3] and reduce the effort of starting new projects by
providing complete and standard toolsets [23], often called
Software Forges [21]. To leverage the potential of
contributors, an organization should consider expanding the

Inner Source term such as to engage in Controlled Source [3]
and share software code with third parties under a non-
disclosure agreement [14]. A step further would be to reveal
source code to the general public [3]. This could be due to
various reasons such as to profit from OSS communities by
sharing development and maintenance cost [14, 31].

Table 1 shows our model. It is a 4-by-3 matrix where the
columns represent the three dimensions: People, Procedures

& Methods and Tools & Equipment. Each dimension has
four capability levels represented by the rows. The model is
based on hierarchy, simpler practices are located at lower
capability levels and more complex practices are at higher
levels. The questions within every element of the matrix
represent a particular practice found in the OSS or Inner
Source literature.

 A: People

Governance, community, individual

B: Procedures & Methods

Requirements engineering, development
method

C: Tools & Equipment

Development tools, open source components

0: Incomplete Q1: Is there know-how available about open
source software within the company? [19]

Q2: Is there know-how available about the open
source mentality within the company? [19]

Q12: Is there information about OSS within
the Organization? [9]

Q13: Is there an open discussion on
requirements elicitation? [26]

Q23: Are developers allowed to use OSS
development tools? [3, 29]

Q24: Is there a tool that allows instant
messaging between developers? [12]

1: Performed Q3: Is there a mentality of open discussion for
projects? [14]

Q4: Is there a frequent exchange of
ideas/problems? [9, 25, 35]

Q5: Is there a general interest for the Open Source
phenomena from co-workers who are involved in
software development? [19]

Q14: Do developers have read-only access to
the source code of any software product or
component within the company? [14]

Q15: Can anyone contribute bug
reports/feature requests to software products?
[7]

Q16: Is there effort devoted to gathering and
analyzing (non-functional) requirements? [9,
28]

Q25: Are there supporting tools for
collaborative software development like: code
repositories, wikis, mailing lists or issue
trackers? [7, 23, 28]

Q26: Is there a common set of development
tools or firm policy on what tools should and/or
could be used? [26, 27]

2: Managed Q6: Are there developers that contribute to other
products/assets than the ones they are assigned to?
[9, 14, 28]

Q7: Are there enough regulations/guidelines to
say that the company has an Inner Source
strategy? [2, 3, 29]

Q8: Does the management level support the Inner
Source endeavor? [3, 9, 29]

Q17: Is there a process for developers
receiving commit access to contribute to
software products? [28]

Q18: Can a developer contribute a feature or
improvement because the developer perceives
it as useful/helpful? [9]

Q19: Is there a process to make software
components reusable within the company?
[22]

Q27: Is there some sort of a version control
system or a change management system? [9, 23,
27]

Q28: Is there a platform to manage reusable
components? [23]

Q29: Is there a (top down) endeavor towards the
use of OSS? [27]

3: Defined Q9: Is there a community notion that drives
developers to contribute to the firms’ general
welfare and/or projects/assets other than the ones
they are assigned to? [9]

Q10: Are there enough people involved in and
around inner/open source activities and ideas for a
corporate culture around that phenomenon? [25,
29]

Q11: Does the company have an inner/open
source vision? [29]

Q20: Is there a process to ensure a fast review
and identifying of proposed requirements and
improvements? [8, 15, 27]

Q21: Is there a predefined process to ensure
quick turnaround of peer-reviews to resolve
problems quickly? [8, 27]

Q22: Is there ambition towards or a process of
large-scale code/ software/ module-reuse
within the company? [22]

Q30: Is there a collaborative development
program / software forge? [14, 21, 23]

Q31: Does the company reveal source code of
software products or components to third
parties under a non-disclosure agreement? [3, 9,
14]

Q32: Does the company reveal source code of
software products or components with an OSS
license? [3, 31]

Table 1. Maturity Model of Inner Source Implementation.

DISCUSSION OF THE FINDINGS
Based on our evaluation, the organization has reached the
performed level in the People dimension and the managed
level in the Procedures & Methods and Tools & Equipment
dimension. Fig. 1 illustrates the results of testing our
maturity model.

Figure 1. Reached capability levels of the organization.

By applying our model to an organization, we identified
various gaps between best practices found in the literature
and the efforts made by the organization. The organization
did not satisfy the managed and defined level in the People
dimension as well as the defined level in the Procedures &
Methods and Tools & Equipment dimension. Based on our
model, we have found the following gaps:

People: There is a lack of know-how exchange between
projects to which a developer has not been assigned. It is
possible to contribute to other products than a developer is
assigned to, but it is not typical. The kind of assistance does
not usually result in usable code. Developers are often
assigned to a specific project and tend to stick to it. There are
exchanges of know-how, as one interviewee stated: “Besides
the management, we ourselves saw the benefit of sharing
knowledge. That’s what we are trying to promote, not only
with ourselves, but also with our colleagues.” However, it is
not possible to provide assistance on a long-term basis to a
project to which a developer is not assigned. Because there
are not many examples of contributions to other projects,
there is still much room for improvement in that regard. The
organization needs to improve collaboration by getting
developers comfortable with sharing code and providing
assistance across the organization. Regarding the presence of
a clear Inner Source or OSS strategy, there is a complete lack.
There are some guidelines and rules on the use of OSS, but a
top-down strategy is missing.

Procedures & Methods: Although the platform comprises
various projects, it is still an active decision for a project
owner to develop a project with the platform (and therefore
make it re-usable) or not. A development project leader
formulated it as follows: “If we want to make it re-usable
then there is an active decision to do so. […] The new
components must present potential value for future projects
and needs. Then, there must be free resources within the
platform to implement it.” To exploit the full potential of a
re-use platform, as many projects and developers as possible

should be embedded into the platform, but there are no
concrete plans in that regard as of yet. To this end, the
organization could decide to set the platform as mandatory
for every new project to enlarge the pool of possible
contributors.

Tools & Equipment: There are some examples in which
code and components were shared with third parties. This
was mostly done when working with an external company or
a subsidiary. Such collaborations were always regulated
under a non-disclosure agreement. A software developer
described such collaboration: “We do collaborate with
external companies, where we share repositories or source
code and where they can contribute to our code.” However,
regarding the revealing of source code under an OSS license,
no examples or any intention to do so were found. The
organization could profit by revealing source code under an
OSS license in various ways. A strategy that controls when
revealing source code is allowed or desired is missing. The
organization would first need to develop such a strategy.
CONCLUSION AND FURTHER RESEARCH
This paper contributes to current research by providing a
model designed to evaluate an organization’s efforts in
implementing Inner Source. The model is derived from both
OSS and Inner Source literature and provides an overview of
the literature concerning the dimensions of People,
Procedures & Methods and Tools & Equipment. These three
dimensions are targeted by our model with a total of 32
questions evaluating the efforts by an organization in
implementing Inner Source.

Based on our results, the organization is now able to work on
specific gaps to improve the implementation of Inner Source.
By introducing Inner Source, the organization was able to
achieve a faster time-to-market as well as to make software
components re-usable. As stated in the interviews, if a new
device is similar to an existing one, up to 30% of the source
code can be re-used. Through the transparent and open
development process introduced with Inner Source,
collaboration between different project teams and employees
across geographically distributed locations improved.
Moreover, Inner Source enabled bottom-up initiatives from
individuals, resulting in regular workshops around GIT and
Linux. With the introduction of Inner Source, requirements
are discussed in more detail with all project leaders in weekly
meetings. To sum up, the organization was able to improve
their software development process using Inner Source.

However, the implementation of Inner Source can be a quite
challenging process. Through our model and the gaps
identified when applying our model, the analyzed
organization is now able to further improve their Inner
Source implementation by targeting their efforts to bridging
the gaps, thereby gaining greater benefits. With our model,
organizations have the potential to overcome many of the
challenges posed by Inner Source by evaluating its adaption
comprehensively and revealing current shortcomings. An
evaluation using our model presents organizations with the

necessary insights to specifically address shortcomings
within their Inner Source implementation and therefore
efficiently improve it in order to fully profit from Inner
Source and all the advantages it brings.

However, there are some limitations to our research. First,
our model was applied only to one case based on data of
seven conducted interviews as well as organizational
documents. However, the data was substantial with almost
200 pages of transcript and represents a sophisticated
example of an Inner Source implementation in a world-
leading organization. Further applications of our model
could help to overcome this limitation. We expect the model
to be applicable to other cases. Applying it to other case
studies could reveal that some changes in the hierarchy of the
questions or new questions might lead to better and more
specific results. We would apply the same procedure in such
evaluations so that the model described in our paper can be
improved continuously. Therefore, we would welcome other
researchers applying our model.

Second, although we carried out a classification, there is still
some room for interpretation when awarding points to a
question. To reduce this limitation, two researchers made the
classification separately and discussed the results. Third, the
nature of the maturity model itself brings a limitation. If one
were to strictly follow the CMMI-DEV, each question within
each capability level should have clearly defined goals
(specific & generic goals) that need to be satisfied in order to
reach the next level. Each goal is again rated on a 6-level
implementation scale, providing a score that determines
whether a goal is satisfied. Because the CMMI-DEV model
is a basic reference only, we altered and reduced the model
to fit the purpose and scope of this study.

We hope that further research will be able to shed light on
the motivation of developers’ engagement in Inner Source
implementation. If an organization is able to improve
motivation to contribute to Inner Source, the organization as
a whole could benefit.
REFERENCES
[1] Carnegie Mellon University, Software Engineering

Institute 2010. CMMI for Development v1.3.
[2] Dinkelacker, J. and Garg, P.K. 2001. Corporate

Source: Applying Open Source Concepts to a
Corporate Environment (Position Paper). (Toronto,
Canada, 2001).

[3] Dinkelacker, J., Garg, P.K., Miller, R. and Nelson, D.
2002. Progressive open source. Proceedings of the
24th International Conference on Software
Engineering (2002), 177–184.

[4] Eisenhardt, K.M. 1989. Building Theories from Case
Study Research. The Academy of Management
Review. 14, 4 (Oct. 1989), 532–550.

[5] Fitzgerald, B. 2006. The transformation of open
source software. MIS Quarterly. (2006), 587–598.

[6] Gaughan, G., Fitzgerald, B. and Shaikh, M. 2009. An
Examination of the Use of Open Source Software

Processes as a Global Software Development Solution
for Commercial Software Engineering. (2009), 20–27.

[7] Grammel, L., Schackmann, H., Schröter, A., Treude,
C. and Storey, M.-A. 2010. Attracting the
Community’s Many Eyes: An Exploration of User
Involvement in Issue Tracking. Human Aspects of
Software Engineering (New York, USA, 2010), 3:1–
3:6.

[8] Gurbani, V.K., Garvert, A. and Herbsleb, J.D. 2006. A
case study of a corporate open source development
model. Proceedings of the 28th international
conference on Software engineering (2006), 472–481.

[9] Gurbani, V.K., Garvert, A. and Herbsleb, J.D. 2005. A
case study of open source tools and practices in a
commercial setting. ACM SIGSOFT Software
Engineering Notes. 30, 4 (2005), 1–6.

[10] Gutwin, C., Penner, R. and Schneider, K. 2004. Group
awareness in distributed software development.
Proceedings of the 2004 ACM conference on
Computer supported cooperative work (2004), 72–81.

[11] Heppler, L., Eckert, R. and Stuermer, M. 2016. Who
cares about my feature request? In: IFIP International
Conference on Open Source Systems. Springer, Cham,
2016. 85-96.

[12] Herbsleb, J.D. and Mockus, A. 2003. An empirical
study of speed and communication in globally
distributed software development. Software
Engineering, IEEE Transactions on. 29, 6 (2003),
481–494.

[13] Lindman, J., Rossi, M. and Marttiin, P. 2008.
Applying open source development practices inside a
company. Open Source Development, Communities
and Quality. Springer. 381–387.

[14] Melian, C., Ammirati, C.B., Garg, P. and Sevon, G.
2002. Building Networks of Software Communities in
a Large Corporation. Citeseer.

[15] Melian, C. and Mähring, M. 2008. Lost and gained in
translation: Adoption of open source software
development at Hewlett-Packard. Open Source
Development, Communities and Quality. Springer.
93–104.

[16] Mockus, A. 2007. Large-scale code reuse in open
source software. Emerging Trends in ICSE’07 Intl.
Workshop on Emerging Trends in FLOSS Research
and Development, Minneapolis, USA, 2007.

[17] Morgan, L., Feller, J. and Finnegan, P. 2011.
Exploring inner source as a form of intra-
organisational open innovation. (2011), 1-12.

[18] Neus, A. and Scherf, P. 2005. Opening minds: Cultural
change with the introduction of open-source
collaboration methods. IBM Systems Journal. 44, 2
(2005), 215–225.

[19] Raymond, E.S. 2001. The Cathedral & the Bazaar:
Musings on linux and open source by an accidental
revolutionary. O’Reilly Media, Inc.

[20] Riehle, D., Capraro, M., Kips, D. and Horn, L. 2015.
Inner Source in Platform-Based Product Engineering.

tech. report CS-2015-02, Dept. of Computer Science,
Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany.

[21] Riehle, D., Ellenberger, J., Menahem, T.,
Mikhailovski, B., Natchetoi, Y., Naveh, B. and
Odenwald, T. 2009. Open collaboration within
corporations using software forges. Software, IEEE.
26, 2 (2009), 52–58.

[22] Riehle, D. and Kips, D. 2012. Geplanter Inner Source:
Ein Weg zur Profit-Center-übergreifenden
Wiederverwendung.

[23] Robbins, J. 2005. Adopting open source software
engineering (OSSE) practices by adopting OSSE
tools. Perspectives on free and open source software.
(2005), 245–264.

[24] Robbins, J.E. 2002. Adopting OSS methods by
adopting OSS tools. CollabNet, Inc. (2002).

[25] Sharma, S., Sugumaran, V. and Rajagopalan, B. 2002.
A framework for creating hybrid-open source software
communities. Information Systems Journal. 12, 1
(2002), 7–25.

[26] Stol, K.-J. 2011. Supporting product development
with software from the bazaar. (2011).

[27] Stol, K.-J., Avgeriou, P., Babar, M.A., Lucas, Y. and
Fitzgerald, B. 2014. Key factors for adopting inner
source. ACM Transactions on Software Engineering
and Methodology. 23, 2 (Apr. 2014), 1–35.

[28] Stol, K.-J., Babar, M.A., Avgeriou, P. and Fitzgerald,
B. 2011. A comparative study of challenges in
integrating Open Source Software and Inner Source
Software. Information and Software Technology. 53,
12 (Dec. 2011), 1319–1336.

[29] Stol, K.-J. and Fitzgerald, B. 2015. Inner Source—
Adopting Open Source Development Practices in
Organizations A Tutorial. (2015).

[30] Turner III, D.W. 2010. Qualitative interview design:
A practical guide for novice investigators. The
qualitative report. 15, 3 (2010), 754.

[31] Van Der Linden, F. 2009. Applying open source
software principles in product lines. Upgrade. 10,
(2009), 32–41.

[32] Van der Linden, F., Lundell, B. and Marttiin, P. 2009.
Commodification of industrial software: A case for
open source. Software, IEEE. 26, 4 (2009), 77–83.

[33] Von Krogh, G., Haefliger, S., Spaeth, S. and Wallin,
M.W. 2012. Carrots and rainbows: Motivation and
social practice in open source software development.
MIS quarterly. 36, 2 (2012), 649–676.

[34] Warsta, J. and Abrahamsson, P. 2003. Is open source
software development essentially an agile method.
Proceedings of the 3rd Workshop on Open Source
Software Engineering (Portland, Oregon, 2003), 143–
147.

[35] Wenger, E.C. and Snyder, W.M. 2000. Communities
of practice: The organizational frontier. Harvard
Business Review. 78, 1 (2000), 139–146.

[36] Wesselius, J. 2008. The bazaar inside the cathedral:
Business models for internal markets. Software, IEEE.
25, 3 (2008), 60–66.

	How are Open Source Practices Possible within a Medical Diagnostics Company? Developing and Testing a Maturity Model of Inner Source Implementation
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	DEFINING INNER SOURCE
	RESEARCH METHOD
	Initial Model
	Data Retrieval
	Iteration Process
	Evaluation and Classification
	Brief Description of the Case

	RESULTS
	People Dimension
	Procedures & Methods Dimension
	Tools & Equipment Dimension

	DISCUSSION OF THE FINDINGS
	CONCLUSION AND FURTHER RESEARCH

	REFERENCES

