
Implementing Federated Social Networking:
Report from the Trenches

Gabriel Silva
Faculty Gama (FGA)
University of Brasília

Gama, Brazil
gabrielssilva.sw@gmail.com

Larissa Reis
Colivre

Salvador, Brazil
larissa@colivre.coop.br

Antonio Terceiro
Colivre

Salvador, Brazil
terceiro@colivre.coop.br

Paulo Meirelles
Faculty Gama (FGA)
University of Brasília

Gama, Brazil
paulormm@unb.br

Fabio Kon
FLOSS Competence Center

University of São Paulo
São Paulo, Brazil
kon@ime.usp.br

ABSTRACT
The federation of social networks aims at integrating users
by means of a decentralized structure, enabling the interoper-
ability among multiple social networks in a transparent way.
Despite a few isolated initiatives in federating open social
networks, there is no adoption of any standard, which hinders
the emergence of new, effective federated systems. To under-
stand the difficulties in the development and standardization
of federated services, we have conducted research on existing
specifications and implementations of interoperability among
social networks. We have developed a federation proof of
concept within the Noosfero platform, implementing a subset
of the Diaspora protocol to federate users and public content,
in addition to complementary specifications, such as Salmon
and WebFinger. In this work, we introduce our results to fed-
erate Noosfero with Diaspora networks, pointing the required
steps before further development. We aim to implement the
Diaspora protocol within Noosfero, finishing its specification
and improving its documentation, encouraging more projects
to adopt this protocol.

ACM Classification Keywords
C.2.6 Internetworking: Standards

Author Keywords
Federation; Social Networks; Noosfero; Diaspora; Free Libre
Open Source Software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

OpenSym ’17, August 23–25, 2017, Galway, Ireland

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5187-4/17/08. . . $15.00

DOI: https://doi.org/10.1145/3125433.3125455

INTRODUCTION
Social networks, or social media, can be defined as platforms
that allow individuals to connect to others, share personal
information, and provide content [5]. The information that
flows in these networks is not always public, but usually takes
place by means of private infrastructure that belongs to service
providers.

In the context of computer security, privacy can be defined as
someone’s capacity of controlling which information related
to them can be consumed and stored, and with whom it can be
shared [17]. In addition to guaranteeing their users’ privacy,
social networks must ensure the confidentiality of the informa-
tion they host, i.e. making sure that users’ private information
is not exposed to unauthorized individuals.

It can be argued that a central provider having all the control
over the flow of private information would put user privacy
in jeopardy, for a few reasons. First, the central provider is a
single point of failure, and a security breach in its infrastruc-
ture exposes every user of the service. Second, users are left
with no option other than blindly trusting the service provider
to not misuse their personal information. In the case of a
commercial entity, that implies trusting the company but also
any other company that may acquire it in the future to not
secretly violate its publicly available privacy policy, and to not
revise the privacy policy itself to include new terms that are
not favorable to its users.

The concept of decentralized networks is an alternative to the
centralization of private data flow. Decentralization is even one
of the original characteristics of the Internet, and a common
organization pattern in communication networks. Communica-
tion networks can be centralized or distributed [2]. Centralized
networks rely on a central node to mediate communication
between all the other nodes. Decentralized networks have
multiple mediating nodes, while, in fully distributed networks,
nodes can communicate directly in any pattern that is possible
and/or necessary. As illustrated by Baran [2] in Figure 1.

https://doi.org/10.1145/3125433.3125455

Figure 1. Conceptual models for communication networks (Source [1]).

Centralized social networks, even if provided by a decen-
tralized infrastructure with the goal to improve performance
and efficiency, conceptually still follow a centralized network
model. The central node represents the service provider while
the rest represents the millions of users. Adopting a decen-
tralized model means dividing users among connected, inter-
mediary providers that offer the same service, guaranteeing
interoperability, so that a user that is served by provider “A”
can still interact with a user that is served by provider “B”.

A set of interconnected servers that seamlessly provide a ser-
vice is defined by some authors as a federated network [15],
which is similar to the definition of decentralized networks
shown in [2], but that is also defined as a set of interoperable
implementations that follow a client-server model [3]. This
definition is important because it generalizes the concept of
federation to other types of communication systems that are
not computer networks and indicates the property of extension
independence — any entity that guarantees interoperability
can be part of the federation without the need of previous
coordination with its existing members.

Service federation contradicts the very existence of a single
provider, common in centralized social networks like Face-
book and Twitter. Decentralization removes information stor-
age restrictions to a single provider. More importantly, ex-
tension independence allows new providers to independently
appear in the federation as long as they respect the interop-
erability criteria, what encourages autonomy. The decentral-
ization of private information distributes the responsibility for
maintaining confidentiality, which is no longer dependent on
a single entity with arguably concealed intentions.

For a federated network to work, there is a need of inter-
operability among systems. The probable scenario includes
communication among vastly distinct systems, in which proto-
cols and standards are essential for successful communication.
This requirement tends to increase the complexity of the appli-
cations, as it introduces problems such as data replication and
consistency management.

In this work, we study federation in the context of social
networks, investigate which aspects are involved in the inter-

operability of this type of media, and report on the state of
the art of the standardization and interoperability. We then
present a case study of implementation of federation features
in Noosfero, a free software 1 platform for social network-
ing, discussing the design and implementation of this proof of
concept.

The remainder of this work is organized as follows. Section
II lists some federation alternatives that obtained popularity
among open social network projects, describing the basic flow
and used technologies. Section III enumerates a number of
related works on the development of decentralized social net-
works and federation infrastructures. Section IV presents the
research design and defines our case of study. Sections V
and VI report the implementation of a proof of concept and
the results we obtained, and Section VII concludes the paper
highlighting its main contributions and pointing paths to future
works.

BACKGROUND
The absence of a standard protocol for the federation of social
networks hinders the development of interoperable applica-
tions, as it leads to the adoption of divergent technologies.
This segmentation affects the network effect and does not help
on the emergence of a de facto standard.

To discuss the standardization of federated systems, it is inter-
esting not only to analyze the community effort to discuss and
adopt specifications, but also to identify the reasons that make
it difficult to reach a consensus. The subject is incipient in the
literature, so we had to resort to reviewing existing community
discussion in the relevant mailing lists. Given the nature of the
World Wide Web Consortium (W3C) as the standards body
of the Internet, we used the archives of the W3C’s Federated
Social Web Community Group2.

In the next subsections, we present a documentation of the
existing initiatives and attempts to establish protocols for the
federation of social networks, describing the used technologies
and the state of practice in different projects.

OStatus
OStatus3 is a protocol suite to enable real-time interaction
between social networks. It was proposed by Evan Prodromou
for the implementation of StatusNet, a federated microblog-
ging network that later originated the GNU Social4 project.

The project obtained visibility in the community, and had its
W3C community group5 created in 2012, one of the few formal
attempts to propose a federation protocol. However, the group
did not produce any results so far. The OStatus specification
received a fair amount of criticism over its limitations, and did
not advance into a standard accepted as good enough for all
participating projects.

1Free/Libre/Open Source Software (FLOSS)
2http://w3.org/community/fedsocweb
3http://w3.org/community/ostatus
4http://gnu.io/social
5http://w3.org/community/ostatus/

http://w3.org/community/fedsocweb
http://w3.org/community/ostatus
http://gnu.io/social
http://w3.org/community/ostatus/

OStatus is defined as a combination of protocols, each cov-
ering a part of the interactions that make federation possible.
It incorporates standards that already existed when it was
proposed, such as Atom/RSS, used for syndicating content
from different sources. OStatus proposes to arrange these
standards and protocols in a suite for real-time interactions
between servers, automating the flow of social interactions
among users.

The specialized protocols that are included in the OStatus
specification are described below.

PubSubHubbub
PubSubHubbub specifies a distributed system for publishing
and subscribing [10]. It makes use of central hubs used by
services to publish new contents and updates, and by other
services to subscribe, receiving real-time notifications on new
activities. It is an extension to technologies such as Atom/RSS,
that depend on users manually fetching for updates.

WebFinger
WebFinger is a protocol used for discovering information
about entities based on standard identifiers [13]. It aims to
solve the problem of sharing identities among servers.

The specification requires every resource to be identified by
a URL. WebFinger servers should respond to HTTP requests,
providing information in JSON or XML formats. The only
information required for other servers to retrieve information
about any entity is its resource URL, which can be generated
with public information using a LRDD process [8].

ActivityStreams
The ActivityStreams specification defines a format to represent
activity in social networks, such as “Bob started following Al-
ice”, “Alice posted a new message”, etc. It aims to standardize
entity formats, making it easier to share and consume those
objects from different servers [1]. The latest specification
proposes the use of JSON objects with a set of predefined at-
tributes, including the action type, involved users, and content
data.

Salmon
Combining solutions like Atom and PubSubHubbub allow
publishing and updating contents across servers in real-time.
However, to allow a content to be updated – for example,
adding a comment to it – from any of those servers, it is also
important to make sure the content state will always be the
same in the entire network.

Salmon is a message exchange protocol that provides a way
to change and track the state of contents across servers [14].
It proposes a standard process to securely exchange informa-
tion among servers, merging all modifications in a stream of
messages.

OStatus Current State
The OStatus project was an important step towards the stan-
dardization of a federation protocol, what is clear given the
creation of a W3C work group. However, the specification
was not complete enough to fulfill the requirements of most

projects, mainly due to its limitation to public content and the
lack of mechanisms to handle privacy.

In 2012, Evan Prodromou announced the development of
pump.io, another approach for federating social networks, with
more modern technologies. It contributed to the weakening
of the OStatus community, which is not currently active. The
StatusNet project is also no longer active.

Beyond there being no active community to maintain or de-
velop the project, most of the technologies used in OStatus
suite evolved. OStatus still specifies the use of technologies
considered by many as legacy, such using Atom (instead of
JSON) for ActivityStreams messages.

Despite using technologies said to be outdated, OStatus is
still used on the development of federated social networks,
such as GNU Social6, which describes itself as a continuation
of StatusNet, and the Mastodon project7, which promises
compatibility with GNU Social.

Diaspora
The Diaspora project8 proposed the implementation of de-
centralized social networks in response to concerns raised
on privacy and freedom in centralized social platforms. Its
first version was released on September, 2010 as a result of a
crowdfunding campaign. By August, 2012, a community of
users started to maintain it.

Diaspora’s main selling point is avoiding content centraliza-
tion, with a lack of central control over user data, by building
a network of personal servers, called pods. Each Diaspora
pod stores only the data of its own users, and allows them
to interact with users on other servers through a federated
network.

The Diaspora federation protocol was created to converge
with OStatus as soon as the latter supported private contents,
what did not happen so far. Most of the protocol specification
relies on the concept of remote users, and on an exchange
mechanism.

Remote Users
A fundamental concept to implement federated networks using
the Diaspora protocol is taking into consideration the existence
of remote users. Most applications only recognize local users,
that is, those who have their credentials and profiles saved in
the local database. However, to enable interaction with users
from other networks, at some point it is necessary to handle
users that do not exist locally.

Diaspora classifies its users in two categories: local and remote.
While local users follow the classic implementation, remote
users only interact with the application through federation
mechanisms. Having two category of users may affect the
project architecture, and this concern should ideally be taken
into consideration on early design stages.

6http://gnu.org/s/social/
7https://github.com/Gargron/mastodon
8http://diasporafoundation.org

http://gnu.org/s/social/
https://github.com/Gargron/mastodon
http://diasporafoundation.org

Message Exchange
In the Diaspora protocol, messages are exchanged using a
subset of the Salmon protocol. Essentially, the Diaspora speci-
fication describes how the message should be built, encrypted,
and sent to the Salmon endpoint of the destination pod.

The payload of a Salmon message is an object that represents
an activity in a pod. Those objects are called entities and can
represent content publications, private messages, comments,
retractions, or even notifications of follow and unfollow ac-
tions.

Every message is sent using HTTP to certain endpoints in the
destination server. The endpoint depends on the nature of the
entity. For example, private messages are sent to user-specific
salmon endpoints, while public contents are sent to public
endpoints.

Protocol Flow
Besides using a subset of the Salmon protocol to exchange
messages, Diaspora also uses WebFinger and hCard standards
to discover identities and fetch public profiles from remote
servers. It is also possible to use ActivityStreams and PubSub-
Hubbub to provide public feeds.

The basic flow is to discover users, fetch their public infor-
mation, then create and send Salmon messages according to
the desired interaction. Diaspora pods will also send Salmon
messages to subscribed servers, notifying about publications
and updates.

Diaspora Current State
Both the project and the protocol specification remain in active
development. The latest specification dates from July, 2016.
There is also a protocol implementation written as a Ruby
library, used in the main Diaspora project, that includes most
of the message exchange mechanism. That library can be
reused by other projects that want to implement federation
with the Diaspora network.

The visibility gained by the Diaspora project has provided it
with a significant following, including adoption of its specifi-
cations by other projects such as Friendica9 and Hubzilla 10,
which support some level of integration with Diaspora pods.
That visibility was not enough, though, to trigger a formal
standardization process.

RELATED WORK
Decentralized social networks are well established in early
works. Au Yeung et al. [11] describes decentralized models
for social networks and proposes the use of technologies such
as linked data. Chao et al. [7] further explores this method
describing seamless interaction and single point of access to
the network, important concepts for federated systems.

In addition to reference models, several works propose im-
plementations for decentralized infrastructures. Buchegger
et al. [6] propose an infrastructure for P2P networks, explor-
ing issues related to decentralized social networks, such as
exchanging messages over a decentralized architecture and
9http://friendi.ca/

10https://project.hubzilla.org

encryption. They also provide insights on asynchronous mes-
sage exchange and the use of a centralized storage mechanism
to avoid content replication.

There are other works that propose implementations of decen-
tralized networks. Boelmann et al. [16] explore privacy and
security issues. Aberer et al. [12] work on content replication,
exploring the impacts of availability and performance on the
propagation of messages.

Bielenberg et al. [4] explore the growth of Diaspora networks,
but more importantly, they give an overview of privacy in
the given platform. The authors show that, at the time, users
preferred to join popular and reliable servers, indicating that
they do not host their own data, even though this is the proposal
of decentralized networks.

Finally, Fan et al. [9] propose a different approach to develop
a decentralized social network, presenting a proof of concept
with a large network. The proposed approach is to, instead
of building a decentralized network, decentralize ordinary
social networks by providing a layer to relay contents from
one network to another.

Even though there are some implementation proposals, we
choose to explore the approach of the Diaspora project. The
discussion regarding the implementation of federation pro-
tocols in existing projects is still incipient, and constitutes a
motivation to proceed with the proof of concept we propose.

Our goal is not to present another federation infrastructure,
but to investigate the implementation of existent protocols in
projects that were not designed to be federated, and differently
from the related works, to report our experiences implementing
the said proof of concept.

RESEARCH DESIGN AND STRATEGIES
Given the non-existence of standards for federated social net-
works, we define the following research questions to guide
this work.

RQ1: What are the protocols in use for federation of social
networks and what is the status of their development and
adoption? During the development of this research, we
explored the protocols proposed and being used to approach
the implementation of federated social networks, reporting
the current status of the alternatives and projects that use it.

RQ2: What engineering problems need to be solved in or-
der to add support for federation in a platform that was
not conceived with federation as a requirement? There is
virtually no literature on the implementation of federation
support on existent projects. Most of the previous work de-
scribe the design and implementation of federated systems,
without assuming a previous, non-federated system. We
wanted to investigate which aspects of a project can affect
the implementation of federation support.

Design Alternatives
There are currently two possible strategies for implementing
federation. Some of the discussion on this topic is recorded

http://friendi.ca/
https://project.hubzilla.org

in W3C mailing lists11 and we have organized them to be
presented in this subsection.

We could have the development of a system or protocol that
should be supported by all applications interested in joining
the federation, a method characterized by a sole entity acting
as the common denominator among all networks, or alterna-
tively by a massive coordination effort among loosely-coupled,
independent projects working on the topic.

The alternative is every application explicitly implementing
the protocol of every other application it wants to connect with.
This strategy does not depend on a standard protocol, or on a
central authority to define what needs to be implemented and
how. It can be called the “polyglot strategy”.

The polyglot strategy brings some restrictions to the federation
of systems, since it depends on every application responding
to the protocol of every other application in the network. This
strategy seems to support the segmentation of specifications
as opposed to what would happen when using a single pro-
tocol as the common denominator. On the other hand, the
adoption of a common denominator depends on a protocol
capable of covering the peculiarities of all possible networks,
including types of relationships among users, content sharing
mechanisms, and privacy policies.

The criticism over the lack of a notion of privacy in OStatus12

is an example of the barriers caused by these differences. The
project only supports public content, so networks with more
complex privacy definitions are not completely covered. In
the meantime, other projects were created to cover these flaws,
such as Diaspora and Friendica.

A specification that meets the requirements of all possible
social networks would require a very large design and develop-
ment effort. An alternative would be a protocol that establishes
a subset of policies as a base to the implementation of more
complex or specific features. It can be argued that, eventually,
these policies would have to support incompatible concepts,
given the difficulty of finding ways to satisfy all systems.

Even if such an agreement could be found, every application
would have to solve its own needs based on the restrictions of
the common denominator. It would possibly require projects
to be heavily modified to adopt such a protocol, which does
not contribute to the viability of that strategy.

The tendency to adopt a polyglot strategy indicates that the dif-
ficulty in finding a universal common denominator surpasses
the interoperability benefits. On the other hand, if projects
keep implementing integration with individual projects we
could eventually find some kind of convergence, leading to a
network effect, and identifying a common denominator for a
subset of applications.

11In the following thread from the federated social networks group
http://lists.w3.org/Archives/Public/public-fedsocweb/
2013May/0058.html

12The discussion regarding OStatus privacy can also be found
in W3C mailing lists, http://lists.w3.org/Archives/Public/
public-fedsocweb/2013May/0061.html.

For now, federation can only be achieved by a polyglot strategy,
adopting the specifications of individual projects, which are
usually a suite of well established protocols. A good start is to
choose a project considering its community activity and the
adherence of its standard with your particular needs.

Case study: Noosfero
Noosfero13 is our free software platform that can be used to
build social and collaboration networks, providing a platform
with blogs, CMS, and feeds. It is written in Ruby, using the
Rails framework, is licensed under the Affero GNU General
Public License version 3, and has an active development com-
munity.

The need for supporting federation is a long-standing issue for
the Noosfero project. Started in 2007, when the ideas around
federation were still incipient, Noosfero ended up evolving
a large set of features required by the different organizations
that use it before a proper plan for adding federation could be
laid out.

We decided to spearhead the development of federation sup-
port in Noosfero, with the main goal of allowing Noosfero
sites to integrate with other social network providers, whether
they also use Noosfero, or not. Our proposal was to use the
Diaspora protocol.

Even though the objective is to eventually support the entire
protocol, the first step was producing a proof of concept that
implements a subset of it. This would help identifying the
required modifications in the Noosfero code, and designing the
rest of the federation infrastructure. It will provide an initial
level of federation that can already be used by end users.

To define the scope of this proof of concept we took into con-
sideration roadmaps that were result of previous discussions in
the community. We derived the following requirements from
the features we believe will help the most to build the feder-
ation infrastructure, mainly the users discovery and message
exchange mechanisms.

1. Remote users must be located via the Noosfero people
search. The implementation must follow the discovery stan-
dard used by Diaspora, based on WebFinger. It must also
be possible to find Noosfero users from any other Noosfero
or Diaspora site.

2. Users from a Noosfero and a Diaspora site must be able
to follow each other. Both sides must be aware of the
relationship.

3. The Noosfero server should receive and handle publications
sent by Diaspora servers, making it possible to consume
contents from remote servers. Sending these messages from
Noosfero will make it possible for local users to be followed,
what is also the scope of the proof of concept.

4. Noosfero sites should also send publications and comments
to any other server that hosts a user that follows the activity
of local profiles. This adds symmetry to the previous feature,
providing reciprocal interaction between the servers.

13http://noosfero.org

http://lists.w3.org/Archives/Public/public-fedsocweb/2013May/0058.html
http://lists.w3.org/Archives/Public/public-fedsocweb/2013May/0058.html
http://lists.w3.org/Archives/Public/public-fedsocweb/2013May/0061.html
http://lists.w3.org/Archives/Public/public-fedsocweb/2013May/0061.html
http://noosfero.org

IMPLEMENTATION
The first step to implement interoperability through the Dias-
pora protocol is to offer a mechanism to discover and provide
users and public profiles, in this case using WebFinger and
hCard.

The second step is to implement a message exchange mecha-
nism to provide the means to talk to third-party servers. The
Diaspora protocol proposes the exchange of messages contain-
ing entities that represent contents and interactions. For now,
Noosfero should handle the following entities:

• Profiles creation, update, and removal

• Publications and comments creation and removal

• Content subscriptions and unsubscriptions

• User relationships (follow and unfollow)

The following subsections also describe technical specifica-
tions of the Diaspora protocol, and could be used as reference
for future implementations.

User Discovery
The Diaspora protocol proposes the use of WebFinger to fetch
user identities and hCard to share public profiles. The im-
plementation used in the Diaspora project still uses XML to
format WebFinger payloads, what is considered legacy.

Figure 2. Sequence diagram of the user discovery process.

The discovery process is described in Figure 2, where the
remote server is queried with an identifier in the format
user@host. The discovery endpoint can be found in the server
metadata, also obtained via WebFinger, on a standard endpoint.
After the identity lookup, the remote server is queried again
for the public profile, which in turn is obtained via hCard in
HTML format.

As the discovery implementation is based on WebFinger, it is
possible to find users on any application that responds to this
format.

Message Exchange
To follow an external user, it is necessary to send a private
Salmon message to its endpoint. Receiving the message, the
Diaspora server creates a local profile to represent the remote
user locally — only after querying the Noosfero server for its
server metadata and the user’s public profile. This process is
shown in Figure 3, and includes part of the discovery process.

Figure 3. Sequence diagram of the contacts sharing process.

It is crucial to make sure that the message was successfully
delivered, otherwise the servers will not share the same state.
The server sending the message should offer some kind of
reliability, retrying or even undoing actions when facing com-
munication problems. When trying to follow a remote user,
Noosfero will retry a predefined number of times, and then
destroy the relationship locally if the remote server did not
respond with a success status.

Private salmon messages are encrypted with RSA to ensure
confidentiality, which requires every user to have a pair of
RSA keys. The proposed implementation for Noosfero uses
the OpenSSL Ruby bindings to generate a key pair for every
user, as soon as that is necessary.

Security is an important aspect that still have to be considered
more carefully. We are aware that the server should not hold
keys in behalf of users, but for now the keys are serialized
and stored in the database. To avoid storing plain text values,
the private keys are encrypted using a symmetric key and the
Advanced Encryption Standard. Ideally, we should be able to
find a solution where each user holds its own keys.

The last step is to handle incoming entities representing user
contents. As shown in Figure 4, new contents are sent by
Diaspora to every server that is involved in the interaction —
in this case, the origin of users following the author of the new
content. At the time of writing, Noosfero supports only public
content.

After receiving the publication notification in a public Salmon
message, Noosfero saves the data locally. It is also necessary

Figure 4. Sequence diagram of the publication sending process.

to include a GUID (Globally Unique IDentifier), required as
identifier for all entities sent across servers.

It is also important to handle retraction entities to maintain
the same state in all servers. These entities are sent every
time a content or user profile is removed, and have the same
visibility as the original content. Handling a retraction involves
querying for a related local entity that matches the one that has
been removed remotely, so that the removal can be replicated
locally.

RESULTS
After the implementation described in the last section, it was
possible to achieve initial federation functionality that show-
cases the possibilities of federation using the Diaspora proto-
col. This proof of concept counts with the following features.

Remote users can be found using Noosfero search using the
user identifier and the remote pod host name (Figure 5). Re-
mote profiles are created to store and display the public info
in the local server.

Figure 5. Diaspora user displayed in Noosfero search results.

Noosfero users can also be found on the Diaspora side, since
Noosfero servers now respond to WebFinger and hCard re-
quests (Figure 6).

Remote users can be followed by users of a Noosfero server.
When following a remote user, Noosfero notifies the remote
server, which will handle the message by creating the rela-
tionship and notifying the related users. Figure 7 shows a

Figure 6. Noosfero users displayed in Diaspora search results.

notification displayed for a Diaspora user after he was discov-
ered and followed by a remote Noosfero server.

Figure 7. Notification of remote activity in Diaspora.

Any content created by Diaspora users being followed by
someone in the local server will be sent to Noosfero, that will
handle them by creating the content locally. The publication
is displayed in the remote user local profile, but notifications
can also be sent to all related users (Figure 8).

Figure 8. Content created by Diaspora users displayed in Noosfero.

As users are able to reply existing publications, comments
must also be sent to remote servers. Noosfero will create
comments locally, and send comments to other servers when
remote users are subscribed (Figure 9). Publications and com-
ments are both important for a first set of federation features.

The information sent by other servers is usually saved to the
local database, so there will be an amount of data replication,
requiring further attention to maintain coherence across the
network. Users can delete publications or comments, edit their

Figure 9. Comments from Noosfero sites are visible in Diaspora pods.

personal information, unfollow other users and even destroy
their own account. These tractions are also represented as
entities that are handled by Noosfero, which also sends them
accordingly.

These features will work between Noosfero and any applica-
tion that supports the Diaspora protocol, not only Diaspora
itself. User discovery will work with any server that supports
the WebFinger and hCard standards as well.

CONCLUSIONS
Our report on the existing federation initiatives helped to iden-
tify what are the protocols in use for federation of social
networks and what is the status of their development and adop-
tion. We described several standards that are used to build
decentralized social networks, where we can highlight the
Diaspora protocol, and OStatus and derived projects, such as
Mastodon. While evaluating the adoption of these technolo-
gies, we could verify the lack of standardization, identifying
a scenario where different projects choose to follow distinct
strategies to better suit individual needs.

The Diaspora protocol provides a reliable process for finding
users and exchanging messages among servers. By implement-
ing it in Noosfero, we were able to federate an instance with
both Noosfero and Diaspora servers, showing that it is feasible
to implement federation in an existing application.

It is important to note that the Diaspora protocol suits only
a subset of the existing projects, from what follows that it
is most probably not a “silver bullet” for building a larger
federation.

Even though we can point projects that successfully imple-
mented a decentralized network, such as Hubzilla 14, which
also supports the Diaspora protocol, these are usually designed
for a decentralized context and aim to provide federation out
of the box. An additional challenge lies with projects that
were not designed as such since the beginning but still want to
support federation.

Our proof of concept helps to answer what engineering prob-
lems need to be solved in order to add support for federation
in a platform that was not conceived with federation as a re-
quirement? To start with, our implementation would require
more effort if Noosfero features were not already somewhat
compatible with the specification. For example, Noosfero

14https://github.com/redmatrix/hubzilla

already supported asymmetric relationships (“follows”) be-
sides symmetric ones (“friends”). If that was not the case, the
implementation would turn harder than it was.

There are a couple points that we want to list regarding the
implementation of the Diaspora protocol in existing social
networks. These are either challenges that can also be faced or
aspects that need attention when adding federation support in
projects that were not designed to be federated. These findings
also offer some insight on how the Diaspora protocol can be
used, and we take the opportunity to point some limitations.

Lessons learned on supporting a federation protocol
Beforehand, it is important to take into account that your
data model will have to be modified to contemplate Diaspora
entities. For instance, all exchanged entities must have a global
identifier (GUID), and each user requires a pair of RSA keys
to properly send and read private Salmon messages.

The protocol may also affect the way the project handles users
and contents, mostly because all remote data must be stored
in the local database, what includes remote profiles and con-
tents. It most likely means that the application must foresee
the existence of remote users and provide some level of inter-
action, like publishing contents and sharing with the rest of
the network.

There are also some points that can help to exchange entities
among servers. When sending or receiving these entities,
besides the message format, it is important to identify the
endpoints to be used for the HTTP requests. Remote servers
will use analogue endpoints to send its own entities when
establishing the communication, so it will be easier to start
by choosing a small set of entities and sending them from a
remote server, implementing the local receiver endpoints as
needed. Contacts and status messages are a good choice of
entities to begin with.

Sending and Handling entities should be done in background,
since it involves network usage and opening and creating
Salmon envelopes, which can be computationally expensive.
Whereas part of the work is to build and exchange Salmon
messages, one should also consider using some tool that im-
plements it, such as the diaspora federation Ruby library 15.

The reliability of the message sending must be assured by each
server. It may be interesting to keep track of the statuses of
each pod, for example storing timestamps and number of trials
of failed requests. Pods do not inform the network of their
status, so everything is still made based on the HTTP responses
status. Considering that the failure to deliver messages affects
the coherence of the information in the network, the protocol
should be reviewed to handle scenario formally.

It is also important to point that a server may implement sev-
eral federation protocols, i.e. servers A and C support two
different federation protocols, and server B wants to join both
networks. This use case will affect the implementation, since
public interactions from users in B with A or C may be poten-
tially replicated.

15https://github.com/diaspora/diaspora_federation

https://github.com/redmatrix/hubzilla
https://github.com/diaspora/diaspora_federation

Consider that a user from B interacts with both A and C
servers, the state of public contents will need to be the same
across all networks. In this case, A and C do not acknowledge
each other, so the responsibility to relay the modifications lies
with B. Also because A and C are isolated, the relayability
restriction is not described in any of the specifications, and it
is up to the local server to decide whether or not the messages
should be relayed.

The relaying problem is also present when all servers support
the same protocol, and it is somewhat covered by Diaspora’s
specification. The idea is that relaying messages to pods that
are in some way related to the interaction, it will be easier to
find references to new pods, helping the servers to establish
new connections. Since every federated feature depends on
a reference to the remote pod, it is important to provide the
means to broaden the network.

Limitations and future work
Regarding the support of the Diaspora protocol, contents with
limited visibility were not in the scope of this proof of concept,
and it is an important step to extend the federation features
turning the network privacy aware. Although we already han-
dle private messages, we need to match Noosfero circles with
Diaspora aspects, making sure the messages will only be visi-
ble for the appropriate users.

For now, only plain text messages are being shared across
servers. Since Noosfero is also a CMS, it is our interest to
federate rich contents, such as articles with embedded HTML
and images. The protocol currently offers the means to share
static images, so it will probably be the case to extend its
custom entities.

It is also important to support direct messages, events and
post reactions (such as a “Like”), showing some convergence
with the Diaspora interaction model, and increasing the use
cases of the federated network. Besides supporting the current
state of the protocol, we must attend to the security issues
stated previously, possibly following good practices such as
using different pairs of keys to sign and encrypt the exchanged
messages.

Whereas we were able to implement the protocol and join
a network of Diaspora pods, it is clear the specification has
to evolve in the ways it deals with content replication and
reliability of the messages delivery. A standard approach to
exchange messages between servers, such as a mechanism
built over HTTP, would address those concerns and be a great
contribution to the Diaspora protocol.

REFERENCES
1. M. Atkins, R. Dolin, C. Messina, W. Norris, and M.

Wilkinson. 2011. Atom Activity Streams 1.0. Technical
Report. http://activitystrea.ms/specs/atom/1.0/

2. Paul Baran. 1964. On Distributed Communications
Networks. IEEE Transactions of the Professional
Technical Group on Communications Systems (January
1964).

3. Solon Barocas, Dan Boneh, Arvind Narayanan, Helen
Nissenbaum, and Vincent Toubiana. 2012. A Critical

Look at Decentralized Personal Data Architectures. CoRR
abs/1202.4503 (2012). http://arxiv.org/abs/1202.4503

4. Ames Bielenberg, Lara Helm, Anthony Gentilucci, Dan
Stefanescu, and Honggang Zhang. 2012. The growth of
Diaspora - A decentralized online social network in the
wild.. In INFOCOM Workshops. IEEE, 13–18.
http://dblp.uni-trier.de/db/conf/infocom/infocom2012w.

html#BielenbergHGSZ12

5. Danah m. Boyd and Nicole B. Ellison. 2007. Social
Network Sites: Definition, History, and Scholarship.
Journal of Computer-Mediated Communication 13, 1
(2007), 210–230. DOI:
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x

6. Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and
Anwitaman Datta. 2009. PeerSoN: P2P Social
Networking: Early Experiences and Insights. In
Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems (SNS ’09). ACM, New York, NY,
USA, 46–52. DOI:
http://dx.doi.org/10.1145/1578002.1578010

7. Wu Chao, Yike Guo, and Bo Zhou. 2012. Social
networking federation: A position paper. In Computers
and Electrical Engineering, Vol. 38. 306–329.

8. E. Hammer-Lahav. 2010. LRDD: Link-based Resource
Descriptor Discovery. Internet-Draft 06. RFC Editor.
1–16 pages. https:
//tools.ietf.org/id/draft-hammer-discovery-06.txt

9. Pili Hu, Qijiang Fan, and Wing Cheong Lau. 2014.
SNSAPI: A Cross-Platform Middleware for Rapid
Deployment of Decentralized Social Networks. CoRR
abs/1403.4482 (2014). http://arxiv.org/abs/1403.4482

10. J. Genestoux M. Atkins, B. Fitzpatrick and B. Slatkin.
2014. PubSubHubbub Core 0.4 – Working Draft.
Technical Report. http://pubsubhubbub.github.io/
PubSubHubbub/pubsubhubbub-core-0.4.html

11. Ching man Au Yeung, Ilaria Liccardi, Kanghao Lu,
Oshani Seneviratne, and Tim Berners-lee. 2009.
Decentralization: The future of online social networking.
In In W3C Workshop on the Future of Social Networking
Position Papers.

12. R. Narendula, T. G. Papaioannou, and K. Aberer. 2012. A
Decentralized Online Social Network with Efficient
User-Driven Replication. In 2012 International
Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing. 166–175.
DOI:
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.127

13. M. Jones P. Jones, G. Salgueiro and J. Smarr. 2013.
WebFinger. RFC 7033. RFC Editor. 1–28 pages.
https://tools.ietf.org/rfc/rfc7033.txt

14. John Panzer. 2009. Salmon Protocol Summary. http:
//www.salmon-protocol.org/salmon-protocol-summary.
(2009). Accessed: 2016-07-15.

http://activitystrea.ms/specs/atom/1.0/
http://arxiv.org/abs/1202.4503
http://dblp.uni-trier.de/db/conf/infocom/infocom2012w.html#BielenbergHGSZ12
http://dblp.uni-trier.de/db/conf/infocom/infocom2012w.html#BielenbergHGSZ12
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1145/1578002.1578010
https://tools.ietf.org/id/draft-hammer-discovery-06.txt
https://tools.ietf.org/id/draft-hammer-discovery-06.txt
http://arxiv.org/abs/1403.4482
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.127
https://tools.ietf.org/rfc/rfc7033.txt
http://www.salmon-protocol.org/salmon-protocol-summary
http://www.salmon-protocol.org/salmon-protocol-summary

15. Stijn Peeters. 2013. Beyond distributed and decentralized:
what is a federated network?
http://networkcultures.org/unlikeus/resources/

articles/what-is-a-federated-network/. (2013).
Accessed: 2016-07-13.

16. L. Schwittmann, C. Boelmann, M. Wander, and T. Weis.
2013. SoNet – Privacy and Replication in Federated

Online Social Networks. In 2013 IEEE 33rd
International Conference on Distributed Computing
Systems Workshops. 51–57. DOI:
http://dx.doi.org/10.1109/ICDCSW.2013.20

17. William Stallings. 2010. Cryptography and Network
Security: Principles and Practice (5th ed.). Prentice Hall
Press, Upper Saddle River, NJ, USA.

http://networkcultures.org/unlikeus/resources/articles/what-is-a-federated-network/
http://networkcultures.org/unlikeus/resources/articles/what-is-a-federated-network/
http://dx.doi.org/10.1109/ICDCSW.2013.20

	Introduction
	Background
	OStatus
	PubSubHubbub
	WebFinger
	ActivityStreams
	Salmon
	OStatus Current State

	Diaspora
	Remote Users
	Message Exchange
	Protocol Flow
	Diaspora Current State

	Related Work
	Research Design and Strategies
	Design Alternatives
	Case study: Noosfero

	Implementation
	User Discovery
	Message Exchange

	Results
	Conclusions
	Lessons learned on supporting a federation protocol
	Limitations and future work

	References

