
An Investigation into Inner Source Software Development:
Preliminary Findings from a Systematic Literature Review

Henry Edison
Lero, National University of

Ireland Galway
henry.edison@nuigalway.ie

Noel Carroll
Lero, National University of

Ireland Galway
noel.carroll@nuigalway.ie

Kieran Conboy
Lero, National University of

Ireland Galway
kieran.conboy@nuigalway.ie

Lorraine Morgan
Lero, National University of

Ireland Galway
lorraine.morgan@nuigalway.ie

ABSTRACT
Given the value and effectiveness of open source software
development to date, practitioners are keen to replicate these
practices inside their respective corporations. This application
of open source practices inside the confines of a corporate
entity has been coined inner source software development.
However, while organisations have found ways to directly ben-
efit from revenue streams as a result of leveraging open source
practices internally, the current research on inner source is
scattered among different areas. Thus gaining clarity on the
state-of-the-art in inner source research is challenging. In
particular, there is no systematic literature review of known
research to date on inner source. We address this challenge
by presenting a systematic literature review that identifies,
critically evaluates and integrates the findings of 29 primary
studies on inner source. Case study approach is the common
research approach undertaken in the area. We also identified 8
frameworks/methods, models and tools proposed in the liter-
ature to support inner source, as well as a set of benefits and
challenges associated with inner source. We envision future
work to perform deeper analysis and synthesis on the empirical
research on inner source software development.

ACM Classification Keywords
D.2.9 Software Engineering: Management – Software process
models; K.6.3 Management of Computing and Information
Systems: Software Management – Software development,
Software maintenance, Software process

Author Keywords
inner source software development, inner source, systematic
literature review, open source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

OpenSym ’18, August 22–24, 2018, Paris, France

© 2018 ACM. ISBN 978-1-4503-5936-8/18/08. . . $15.00

DOI: https://doi.org/10.1145/3233391.3233529

INTRODUCTION
Open Source Software (OSS) has been highly prevalent in
both practice and research. Given the value and effectiveness
of open source development to date, practitioners are keen to
replicate these practices inside their respective corporations.
This application of open source practices inside the confines
of a corporate entity has been coined inner source software
(ISS) development [7, 49, 16, 41]. ISS development has been
seen as a way in which organisations adopt OSS [17, 19].
Leading organisations such as Lucent Technologies, Nokia,
Philips, IBM and HP etc, have provided example of inner
source implementations [5], which has led to the emergence
of studies on inner source in the scientific literature (e.g. [23,
24, 42, 41, 43]).

While the literature purports that ISS development presents
many benefits for internal use, there have been growing re-
search efforts to equally highlight the challenges associated
with adopting and scaling inner source practices. However,
understanding the state-of-the-art in inner source research is
challenging. Capraro and Riehle [5] recently published a re-
view on inner source literature. Although the findings are
significant and shed light on the grey area of ISS development,
the inner source research field remains dispersed among dif-
ferent research areas. Thus, the objective of this study is to
understand the current research that has been carried out on the
usage of ISS development or the application of OSS principles
within existing organisations. This objective is broken down
into the following research questions: (i) RQ1 - What research
methods have been used in studies on ISS development? (ii)
RQ2 - What types of contributions are provided by the studies
on ISS development? and (iii) RQ3 - What are the reported
benefits and challenges associated with ISS development?

The remainder of this article is structured as follows. Section
2 presents a brief discussion of related work in this area and
followed by a presentation of our research approach in Section
3. In Section 4, we present an overview of the characteristics
of the primary studies. The key findings of this study are
presented in Section 5, and discussed in Section 6. Finally, the
conclusion is presented in Section 7.

https://doi.org/10.1145/3233391.3233529

RELATED WORK
We identified four secondary studies [17, 19, 6, 5] on inner
source that were considered relevant to this study. For exam-
ple, Hauge et al. [17] and Höst and Oručević-Alagić [19] per-
formed literature reviews by following the guidelines provided
by Kitchenham and Charters [21]. The study by Crowston et
al. [6] could be considered partly systematic, since the rele-
vance can be seen in terms of search strategy, data sources,
inclusion/exclusion criteria and data extraction. On the other
hand, the study by Capraro and Riehle [5] presented an exten-
sive literature review but showed no evidence of following any
systematic guidelines.

Both Hauge et al. [17] and Crowston et al. [6] conducted
a search on specific journals or conferences on open source,
while Höst and Oručević-Alagić [19] and Capraro and Riehle
[5] only focus on software engineering related databases such
as Inspec, Compendex, ACM Digital Library and IEEE Xplore.
Furthermore, Hauge et al. [17] did not report the used search
string and Capraro and Riehle [5] did not reveal the timespan
for the search.

Neither Crowston et al. [6] nor Capraro and Riehle [5] used
explicit criteria for quality assessment of the primary studies,
which hinders interpretation. Contrary to these studies, Hauge
et al. [17] and Höst and Oručević-Alagić [19] adopt the quality
assessment criteria developed by Dybå and Dingsøyr [8]. For
our review, we adopted a comprehensive set of evaluation
guidelines based on scientific rigour and industrial relevance
proposed by Ivarsson and Gorschek [20].

The aim of the review conducted by Hauge et al. [17] and Höst
and Oručević-Alagić[19] was to assess the current research on
how organisations adopt OSS, while Crowston et al. [6] inves-
tigated the state of research on open source in general. These
studies found that there is a lack of studies on open source
software practices inside organisations. Capraro and Riehle
[5] developed a model of the elements that constitute inner
source. The study also presents a classification framework
for inner source programs and projects, and a map of known
inner source endeavours, as well as qualitative models sum-
marising the benefits and challenges of inner source adoption.
All studies identify that there is a trend towards organisational
adoption of open source principles in their internal develop-
ment processes.

In summary, among the existing relevant literature reviews, the
study by Capraro and Riehle [5] is only one study that is closer
in similarity to our study. One notable difference between
the study by Capraro and Riehle [5] and our study is the
systematic approach we adopted for our research methodology
and the coverage of the search. The study by Capraro and
Riehle is more of a literature survey than a systematic literature
review (SLR). In addition, our study is much broader since
we consider both software engineering (SE) and information
systems (IS) literature.

RESEARCH METHODOLOGY
To answer our research questions, we systematically assessed
existing evidence related to ISS development using SLR guide-
lines [21]. An SLR facilitates in identifying and collecting

key papers in a specific area of interest, and evaluating and
interpreting the reporting discussions and findings [21]. A
defined review protocol, search strategy, explicit inclusion and
exclusion criteria, and specified information that will be re-
trieved from primary studies differentiates a systematic review
from a conventional literature review [21].

Search Strategy
To help build the search terms, a set of key papers were iden-
tified by all authors. Keywords used in these papers were
extracted and aggregated and used as the input for the search
terms. From the key papers, we extracted a total of 76 key-
words (30 unique). The top three keywords are “open source”
(23.68%) and “software development” (19.74%), and “inner
source” (10.53%).

The search terms were organised into three groups: interven-
tion, control and population, and separated by AND-clauses.
Table 1 describes the generic search strings. The developed
search terms were then searched through in two digital libraries
(EngineeringVillage and Scopus) to view its effectiveness. Re-
visions to the search terms were made until we were able to
retrieve all the key papers from these two digital libraries.

A search for relevant literature was conducted on the title,
abstract and keyword. We decided to use digital libraries
that have good coverage, familiarity, reputation, advanced
features and exportability [10]. The digital libraries used to
search for relevant literature were relevant to (i) SE research:
Compendex, ISI Web of Science and Scopus [9, 3], and (ii)
IS research: AIS e-Library. The actual search was performed
in August 2017. We collected and analysed articles that have
been published until August 2017.

Group Terms
Intervention
(key concepts)

{inner?source} OR innersource
OR {open?source} OR opensource

Control (con-
text)

software

Population
(scope)

organi?ation OR firm OR company
OR corporat* OR enterprise
OR industr* OR vendor OR
institution* OR internal OR
inside OR hybrid

Table 1. Search terms organisation

Selection Strategy
Studies were eligible for inclusion in this study if they are
(i) peer-reviewed papers, (ii) written in English, (iii) full-text
available, and (iv) focusing on ISS development or the adop-
tion of OSS principles within an organisation. Both theoretical
and empirical studies were included in the review process.
Similarly, studies conducted in both academic and industry
settings were included.

The removal of irrelevant studies and duplicates across digital
libraries was conducted as a pre-screening process in the litera-
ture review. This was then followed by applying inclusion and
exclusion criteria, which was done in two stages. In the first
stage, the criteria were applied on the title and abstract level

of the papers. In the second stage, the inclusion and exclusion
criteria were applied on the full-text of the remaining papers.
In every stage, two independent reviewers evaluated the same
paper. To be included in the next phase, two reviewers had
to be in agreement that a paper met the inclusion criteria. In
the cases where both reviewers did not agree on the decision,
a third reviewer was called. Full-text papers that met the
inclusion and exclusion criteria were then assessed on their
quality.

Quality Assessment
In a SLR, study quality assessment was essential to evaluate
the existing research topic by using a trustworthy, rigorous and
auditable methodology [21]. Hence, the quality assessment
was performed independently and the results were not used to
decide whether to include or exclude a particular study.

The quality of the primary studies was evaluated based on their
scientific rigour and industrial relevance criteria as presented in
Ivarsson and Gorschek [20]. We also devised a similar rubric
for assessing the rigour of the philosophical papers. Scientific
rigour was evaluated by using the following aspects: (i) study
context: whether a reviewer can understand and compare
it to another context, (ii) study design: whether a reviewer
can understand how rigour the research method is applied in
the study or to which the theoretical contribution used sound
theoretical bases to guarantee the quality of the research, and
(iii) validity discussion: to what extend the threats of the study
or limitation of the theoretical approach are described and
measures to limit them are detailed.

For the industrial relevance, we used the same rubric for both
empirical and philosophical studies. Relevance was assessed
using the following aspects: (i) subject: whether the subjects
in the study were representative of inner source practitioners
e.g. students or practitioners, (ii) context: whether the study
was conducted in the representative industry setting, (iii) scale:
whether the size of the study was realistic or based on a toy ex-
ample, and (iv) research method: whether the research method
employed in the study facilitates investigating real situations
and relevant for practitioners. The grading for each aspect was
done on three point scale: yes (weighing 1 point - indicating
that data for specific aspect is clearly available), somewhat
(weighing 0.5 point - indicating that data is vaguely available)
and no (weighing 0 point - indicating that data is unavailable).

Data Extraction and Synthesis
To help answer our research questions, data extraction was
carried out guided by an extraction form implemented in MS
Excel. The following aspects were extracted from the primary
studies: (i) type of the studies, classified as: empirical research,
experience report, philosophical, opinion, (ii) contributions of
the studies: model, theory, framework or method, guidelines,
lessons learned, advice or implication, and tools [34], and
(iii) research method, including data collection and analysis
method, and theoretical lens.

The data extracted from each primary study were integrated
in categories representing the research topic addressed, the
research method used, the contributions of the study and the
benefits and challenges of ISS reported. Frequencies of each

component in the categories were recorded. The results were
then presented and discussed with the other coauthors.

CHARACTERISTICS OF PRIMARY STUDIES

Search Results
From all digital libraries, we retrieved a total of 13,178 articles.
By applying the inclusion/exclusion criteria, we accepted 29
articles as primary studies. The 29 primary studies are listed
in Table 2 and referred using their IDs throughout the rest of
the paper.

ID Author(s) ID Author(s)
PS1 Alexy et al. [1] PS16 Pulkkinen et al. [35]
PS2 Dinkelacker et al. [7] PS17 Riehle et al. [36]
PS3 Gaughan et al. [12] PS18 Riehle et al. [37]
PS4 Grottke et al. [14] PS19 Ripatti et al. [38]
PS5 Gurbani et al. [15] PS20 Sharma et al. [40]
PS6 Gurbani et al. [16] PS21 Stol et al. [41]
PS7 Hauge et al. [18] PS22 Stol et al. [42]
PS8 Linåker et al. [25] PS23 Stol and Fitzgerald

[43]
PS9 Lindman et al. [23] PS24 Theunissen et al.

[44]
PS10 Lindman et al. [24] PS25 Torkar et al. [45]
PS11 Martin and Lippold

[26]
PS26 Linden et al. [47]

PS12 Melian and Mähring
[27]

PS27 Linden [46]

PS13 Morgan et al. [29] PS28 Vitharana et al. [48]
PS14 Neus and Scherf [30] PS29 Wesselius [49]
PS15 Oručević-Alagić and

Höst [33]

Table 2. List of Primary Studies

Publication Sources and Years
The distribution of the years and venues of the primary studies
is shown in Fig 1. While the term inner source was introduced
in the year 2000 [31], the first research paper in this topic
was published two years later (PS2). 14 out of 29 papers
(48%) are published in journals i.e. Research Policy, IST,
JAIS, TOSEM, etc., whereas 15 papers (52%) are presented in
various conferences in both SE and IS, i.e. OSS Symposium,
ECIS, PROFES, etc.

Quality of the Primary Studies
Based on the rigour and relevance scores, the primary stud-
ies can be considered to be of good quality. The percentile
rankings of the quality scores are shown in Fig. 2. The maxi-
mum score that a paper could get was 7. Studies with scores
below the lower quartile lacked clear information about the
study design and threats to validity, as required in the rigour
rubric. Typically, these studies were published in practitioners-
oriented journals e.g. IEEE Software (PS23, PS26, PS29)
or Communication of the ACM (PS6). Studies with mini-
mum scores are philosophical papers. Since the identified or
proposed framework or methods have not been studied em-
pirically in industry settings, the relevance scores were zero.
Moreover, most of the studies within the interquartile range

20
02

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
13

20
14

20
15

20
16

0

1

2

3

4
#s

tu
di

es

Conference Journal

Figure 1. Temporal Distribution of the Primary Studies

did not discuss validity threats and how they were mitigated,
which negatively affected the trustworthiness of the reported
findings [39].

1 2 3 4 5 6 7

Figure 2. Percentile rankings of the quality scores

FINDINGS
In this section, we present an overview of the body of inner
source literature that originated from our literature review. We
structure this section according to our research questions.

RQ1 What research methods have been used in studies
related to ISS development?
Out of 29 primary studies, 23 papers are empirical research
papers. Case study approach was the main common research
approach undertaken to investigate inner source approach (13
studies), whilst 2 studies (PS1 and PS7) were employing mixed
method, and one study used design science approach (PS19).
Some experience report papers were submitted to a special
industry experience track of particular conference (PS5, PS11,
PS19).

Our primary studies shows that most research on inner source
approach has been conducted in established and large multi-
national organisations, and only one study in an SMEs con-
text (PS7). These organisations come from various business
domains, e.g. engineering, software development, medical
equipment or telecommunication. They typically have a long
history with proprietary oriented and industrial/commercial

mode of software development and gradually incorporated
open source software and methods into their internal develop-
ment (PS30). The overview of the empirical research papers
is illustrated in Table 3.

Interview and coding technique were the main data collection
and analysis method used in the existing research on ISS. The
total number of interviews in each studies were ranged be-
tween 5 (PS7) and 32 (PS21). The participants involved in
interview were typically employees with engineering back-
grounds and roles, i.e. software developer, architect, program-
mer and administrative role, e.g. manager. The working nature
of these two roles are also highly affected by the decision of
the organisation to adopt inner source approach (PS1).

Out of 13 case study papers, only 6 studies used a theory
or conceptual framework as a theoretical lens. Conceptual
framework serves as a guide to explain the primary objects of
a research project e.g. key factors, constructs or variable and
the relationship among them [28]. It is a sensitising and sense-
making device that guides the data collection and analysis
processes. Three of them were published in IS conferences
(ECIS - PS10, PS13) and journal (JAIS - PS25). In contrast
to SE research, the use of theory in IS research is critical
[22]. For example, Orlikowski and Lacono [32] argued that
IS research is under theorised. Hence, IS researchers aim
for strong theoretical contributions and ground their work in
theory [22].

RQ2 What types of contributions are provided by the stud-
ies on ISS development?
Fig. 3 shows the distribution of the contributions of primary
studies. The main contribution of the primary studies was
in the form of theory (15 studies) around an ISS approach.
Nonetheless, 27% (8 studies) of the contributions provided
concrete approaches that could be used to support an ISS ap-
proach. These approaches included framework or method
for implementing an ISS approach (5 studies), e.g. progres-
sive open source (PS2), corporate open source (PS6), models
representing relevant concepts of inner source (2 studies) e.g.
theoretical model to promote software reuse (PS28), and inner
source business model (PS29) and tool supporting technical
infrastructure of inner source (PS19). However, study PS8
concerned about the framework used in the study, which has
not been evaluated by others than the authors. Thus, they
called for more studies to evaluate the existing frameworks,
methods and tools in a different context so that they can be
generalised. Other studies provided guidelines (2 studies), les-
son learned (3 studies) and advice (1 study) for implementing
an ISS approach. The list of the frameworks/methods, models
and tools are described in Table 4.

For a successful technology transfer, academic research results
are required to be validated statically or dynamically in real
setting [13]. Static validation involves presentation of the so-
lution in industry and collecting feedback from practitioners,
whilst dynamic validation includes piloting the solution in a
real development setting. The purpose of the validation is not
to sell the framework or model but to gather valuable feedback
regarding usability and scalability of the frameworks/models

ID Research Ap-
proach

Data Collection
Method

Data Analysis
Method

Theoretical Lens Context of study

PS1 Mixed
method

Interview & sur-
vey

Content analysis – A multinational engineering
firm

PS2 Case study Not-specified Not-specified – HP
PS3 Interview Interview Coding technique – 7 large multinational compa-

nies
PS4 Case study Data archival Log transformation – A commercial software ven-

dor and Sourceforge.net
PS6 Case study Not-specified Not-specified – Lucent Technologies
PS7 Mixed

method
Interview & sur-
vey

Not-specified – 3 SMEs

PS8 Case study Data archival &
interview

Archival analysis Inner source framework [41] An international software
development firm

PS9 Case study Interview Not-specified – Nokia
PS10 Case study Interview Coding technique Institutional entrepreneurship Philips and Nokia
PS12 Case study Interview Coding technique Actor-Network Theory (ANT) HP
PS13 Case study Interview Coding technique Open innovation theory [11] Large medical equipment

supplier
PS15 Case study Focus group Coding technique – Global market leader in soft-

ware and hardware
PS16 Case study Participatory ob-

servation
Not-specified Knowledge life-cycle and hu-

man aspect of KM
Nokia

PS17 Case study Interview Coding technique – Three international software
companies

PS19 Design
science

Prototyping Not-specified – Insta DefSec Ltd.

PS21 Case study Interview Coding technique – 3 large multinational compa-
nies

PS22 Case study Interview Coding technique – A large, globally distributed
organisation

PS23 Case study Interview Not-specified – Philips Healthcare, Lucent
PS25 Case study Interview Thematic analysis Avison and Fitzgerald [2]

framework
A large telecommunication
company

PS26 Case study Not-specified Not-specified – 2 large European companies
PS28 Case study Interview Not-specified – IBM
PS29 Case study Not-specified Not-specified – Philips Healthcare

Table 3. Overview of the empirical research papers

Guidelines
6.9%

Models

10.3%

Framework

13.8%

Theory

51.7%

Lesson Learned

10.3%
Advice

3.4% Tools
3.4%

Figure 3. Contributions of the primary studies

and get commitment to implement them across the organisa-
tion [13]. Out of 8 approaches, 6 of them had been validated
in industry settings (P2, P6, P19, PS21, PS25, P29), while the
remaining approaches (PS20, P28) are considered theoretical
frameworks.

In the studies PS2, PS6, PS29, the proposed frameworks and
model have been dynamically validated in real development
projects in the adopting organisations. In the study PS19,
the proposed tool had been tested in a real implementation
as part of the design science process. In the study P21, the
framework was validated using qualitative approach where
the data were collected from three multinational organisations.
Study PS25 is the only study that performed static and dynamic
validation. In the dynamic validation, the organisation adopted
the proposed framework in a pilot project.

RQ3 What are the reported benefits and challenges asso-
ciated with an ISS development?
Table 5 lists the summary of the reported benefits and chal-
lenges. We categorise them into four facets: software de-
velopment, process management, tool and technology and
managerial and organisation.

Software Development
Most of the benefits of an ISS approach reported in our primary
studies are related to engineering practices to build software.
For example, the adoption of an ISS approach enables organi-
sations to improve software quality and reduce technical debt
(PS2, PS3, PS8, PS18, PS20, PS25). Since contributors across
an organisation can join the community, they significantly
broaden the expertise available to a project. Furthermore, they
can help fix problems more quickly; either by preventing mis-
takes or capturing them earlier. This in turn helps a software
project reach the goals more quickly and at higher quality
(PS2, PS3, PS18, PS20, PS21). The collaboration between
various business units increases core team innovativeness in
order to satisfy user needs (PS13). Several studies have also re-
ported that an ISS approach reduces development effort as well
as cost (PS6, PS7, PS10, PS20). Software reuse maximises
the number of projects that can be shared across organisation.

Moreover, development costs are shared among the projects
or business units using the shared assets.

On the other hand, the common challenge of an ISS approach
is related to security aspect (PS2, PS3, PS11, PS27). The
openness sought after in an ISS approach makes security and
access control to the internal software artefacts e.g. code or
design more difficult. For example, project managers and de-
velopers are wary of random exposure to their internal product
artefacts, e.g. source code and design. For developers, there is
a fear of sharing or showing substandard or work. Moreover,
once various contractors that are employed within different
areas of the organisation are given access, there is the percep-
tion that project managers have no control over what security
the vendor is using. On the other side, contractors might be
reluctant to use an ISS approach due to the fear of loss of
intellectual property.

Process Management
The role of contributors in an ISS approach might evolve and
shift based on their personal interest. For example, they can
shift from developer to maintainer or reviewer, before they
will be the project leader or benevolent dictator. This prede-
fined path allows new developer to familiarise themselves with
the architecture and to perform tasks with different difficulty
levels. Similar to OSS project, the community has a great deal
of freedom to choose processes, methods and tools in their
works (PS25).

The main challenge associated with process management how-
ever, is how to build an effective community within the or-
ganisation (PS13, PS21). The study by Stol et al. (PS21)
found that there are several issues between the core team and
business units in relation to their roles. The core team may be
reluctant to adopt contributions from business units, due to the
“not invented here” syndrome and non-generic contributions.
On the other hand, business units treat the core team as a tra-
ditional component supplier. They are also often reluctant to
contribute to the shared assets since they consider that devel-
opment is the responsibility of the core team. The study by
Morgan et al. (PS13) also found the challenges in achieving a
common vision and aligning objective in an ISS environment.
This study also found that even though knowledge sharing
is perceived as important in facilitating value creation, it is
difficult to get people to invest time or effort in sharing code
or building skills and knowledge outside their own domain.
The core team and business units only contribute to their areas,
as there are often no incentives to contribute beyond them.

Tools and Technology
Our primary studies reveal that an ISS approach has increased
information availability and visibility across organisations and
defined an entry path for newcomers and new ways of working
(PS25). For example, a good software forge indexes informa-
tion sources, including source code assets or components and
allows for centralised searching. This is important for employ-
ees with technical roles, insofar as they are able to contribute
to further development.

Despite the benefits of software forges, several studies identi-
fied challenges related to the tools and technology used in an

ID Type Description Validation
PS2 Framework Progressive Open Source (POS): consists of three-tier model: (i) Inner Source – refers

to the application of the OS approach and benefits to developers within the corporate
environment, (ii) Controlled Source - which is outside of the corporate firewall, but
restricts access limited to specific corporate partners and (iii) Open Source - refers to the
open use of Internet for development, and release of the software source code in a license
approved by OSI.

Dynamic

PS6 Framework Corporate Open Source (COS): evolves in four phases: (i) Initial Development, led by
the author of the code, (ii) Ad-hoc Partners, distributes the binary to a wider audience
inside the company, (iii) User-initiated Change Request, expanding the class of users
within the company to get feedback or wishes for new features, (iv) Establishing a COS
Project, as the request for product-specific changes began to accelerate, other within the
company started to contribute code and ideas.

Dynamic

PS19 Tool OpenCart-based platform that acts as a marketplace for promoting software reuse within
an organisation. The platform also provides information about the name and version of
components, the technical and functional descriptions, the locations and contact persons
of the components and prices and licenses if a third party component was included.

Dynamic

PS20 Framework The framework guides the creation and management of hybrid-OSS communities in
organisations, consists of three major elements: (i) community building, (ii) community
governance, and (iii) community infrastructure.

–

PS21 Framework The framework identifies nine important factors that need to be considered when imple-
menting Inner Source. The framework can be used as a probing instrument to assess an
organisation on these nine factors so as to gain an understanding of whether or not Inner
Source is suitable.

Static

PS25 Framework The framework to describe a development methodology from its origin to its practical,
and to compare two or more development methodologies.

Static and
dynamic

PS28 Model Theoretical model to promote reuse within the organisation. –
PS29 Model ISS business model. Dynamic

Table 4. Frameworks/methods, model and tools to support ISS development

Facet Benefits Challenges

Software Devel-
opment

Better software quality (PS2, PS3, PS8, PS18, PS20,
PS25)

Lack of documentation (PS21)

Reduced development time and time-to-market (PS2,
PS20, PS21)

Missing functionality (PS21)

Shared community debugging (PS2) Balancing between architectural refactoring and im-
plementing new requirements (PS21)

Reduced development cost (PS6, PS7, PS10, PS20) Complexity in using and configuring the shared asset
(PS21)

Increase innovativeness (PS13, PS18) Security (PS2, PS3, PS11, PS27)
Avoid duplicate work and promote the reuse of soft-
ware (PS2, PS3, P10, PS12, PS13, PS17, PS19,
PS28)

Process Manage-
ment

Define an entry path for newcomers (PS25) Building an effective community (PS13, PS21)
Define ways of working (PS25)

Tool and Tech-
nology

Increase information availability and visibility
(PS25)

Migration from existing tools and infrastructure
(PS2, PS5)
Maintain code tree, platform, version control and
related software engineering tools (PS2)
Time consuming to search and navigate the software
forge (PS2, PS3, PS8, PS16)

Managerial and
Organisation

Rapid re-deployment of key developers (PS2, PS12,
PS21)

Leadership and task assignment (PS2)

Improve company’s image (PS26) Achieving a high level of commitment (PS13)
Cultural resistance to change (PS11, PS14, PS29)

Table 5. Benefits and challenges of ISS approach

ISS approach. Once the software forge attains a certain size,
searching and navigating through projects and components
details can be time consuming (PS2, PS3, PS8, PS16). Thus,
a proper search and navigation infrastructure is important for
all contributors. Typically, each software project and group
within the organisation has their own infrastructure e.g. ver-
sion control, bug reports etc., that suits their needs. Therefore,
the introduction of uniform toolset and infrastructure in the
organisation is a challenges from a technology and user per-
spective (PS2, PS5). Once they all have migrated, the new IT
support is critical to maintain both software e.g. the uptime,
running schedule backups and recovery when necessary, and
hardware.

Managerial and organisation
In an ISS approach, a community of contributors consists
of developers who are familiars with the OSS environment
within the organisation e.g. source tree, bug reporting, source
management tools, corporate specific coding, commenting and
code review process. This makes it easier to identify the talent
across organisations (PS21). Hence, an ISS approach creates
an opportunity for rapid re-deployment of developers from
one project to another and from one product to another (PS2).
It also increases the number of parallel development (PS12).

While most organisations today operate in a hierarchical or-
ganisational structure, the adoption of an ISS approach creates
a virtual organisation (PS2). Contributors may come from dif-
ferent business units within the organisation. Hence it makes it
more difficult to manage the talent and skill set at the corporate
level. Additionally, it takes more time and effort for people to
communicate (PS3), for example, the coding standard must be
maintained at corporate level, rather than at a project or group
level, and new developers must be trained for maximum use
of an ISS approach.

Cultural resistance to change is one of the main challenges for
ISS approach adoption (PS11, PS14, PS29). It requires a high
level commitment from all stakeholders (PS13). ISS approach
changes the relationship within the organisation from a one
way dependency to a two way dependency (PS29). Those who
are used to developing software, may become the users of the
software, and vice versa.

DISCUSSION

Implication for Research and Practice
As far as we are aware of, this is the first attempt to review
on inner source research by incorporating the relevant SE and
IS literature in a systematic way. Our findings show while
a great concentration of empirical research on how organi-
sations adopt ISS development into their internal software
development processes, other research areas receive much
less attention. One of the implications of these findings for
research and practice is the need for more empirical studies on
engineering practices, tools and technologies and management
practices to support ISS development. Specifically, while ISS
development is highly influenced by OSS development, there
is a need to translate OSS practices to suit the organisational
context to achieve the benefits associated with OSS.

Our results show that majority of our primary studies are in-
vestigating ISS approach in the context of large, and globally
distributed organisations. More studies that empirically val-
idate existing frameworks, methods or models in different
context would be helpful to understand their generalisability.
Furthermore, to advance our understanding of the inner source
phenomenon, researchers need to draw on theoretical founda-
tions that have been used in prior research on OSS, as well
as other theoretical lens that are considered relevant to ISS
approach.

The implication for practice also lie in the evidence of the
benefits and challenges of ISS development. The findings
have shown that the adoption of ISS development helps or-
ganisations to improve better quality, time-to-market and in-
novativeness. However, as suggested by Brown et al. [4],
that newcomers should understand the reality of the method
through an appropriate enculturation, so that they can recog-
nise what works and what does not work, and thus be aware
of changing working processes.

Threats to Validity
Our study is not impervious to threats to validity, which may
affect the outcome of this study. In the following section, the
threats to validity of this study will be identified and discussed.
To mitigate selection bias, we had tested various versions
of the search string. We did not use the variation of “open
source” for the following reasons. We observed that papers
use the term “libre” together with the term “open source”. In
addition, papers that use the term OSS or FLOSS must open
the abbreviation, which contain “open source”.

To limit subjective bias for an individual reviewer, each pa-
per was reviewed by two reviewers when applying inclu-
sion/exclusion criteria. Prior to the actual selection of the
primary studies, all reviewers performed pilot runs with 50
papers. The aim was to see whether all reviewers had the same
understanding and perspective on the inclusion/exclusion cri-
teria. Any dissimilarity in assessment between reviewers was
discussed in the presence of all reviewers.

CONCLUSION AND FUTURE WORK
Influenced by the success of OSS development, the area of
ISS development is gaining more attention from both aca-
demic and practitioners. This approach allows organisations
to create high quality products in a shorter timeframe by com-
bining heterogeneous development. Unlike existing literature
reviews, this review is performed systematically and focuses
specifically on ISS development within organisations. Further-
more, our review is interdisciplinary, drawing on both software
engineering and information system literature to provide an
extensive overview of the ISS phenomenon.

Through our SLR, the study establishes a state of research on
ISS development. We found that the case study approach is the
common research approach undertaken in the area. While the
main contributions of the primary studies is in the form of the-
ory, we also identified existing frameworks/methods, models
and tools proposed in the literature to support ISS development
as well as a set of benefits and challenges associated with ISS
development.

We envision future work could perform a deeper analysis
and synthesis on the empirical research on ISS development.
Based on this analysis and synthesis, we will further investi-
gate the limitations of the current research on ISS development
and establish a research agenda on inner source. To enhance
the findings of this review, we intend to conduct a compre-
hensive survey of practitioners to identify the key challenges
involved in ISS development and propose some resolution
strategies to overcome the challenges.

ACKNOWLEDGMENTS
This work was supported with the financial support of the
Science Foundation Ireland grant 13/RC/2094 and co-funded
under the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to Lero
- the Irish Software Research Centre (www.lero.ie)

REFERENCES
1. O. Alexy, J. Henkel, and M. W. Wallin. 2013. From

Closed to Open: Job Role Changes, Individual
Predispositions, and the Adoption of Commercial Open
Source Software Development. Research Policy 42, 8
(2013), 1325–1340.

2. D. Avison and G. Fitzgerald. 1995. Information Systems
Development: Methodologies, Techniques and Tools.
McGraw-Hill Education.

3. P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. 2007. Lessons from Applying the Systematic
Literature Review Process within the Software
Engineering Domain. Journal of Systems and Software
80, 4 (2007), 571–583.

4. J. S. Brown, A. Collins, and P. Duguid. 1989. Situated
Cognition and the Culture of Learning. Educational
Researcher 18, 1 (1989), 32–42.

5. M. Capraro and D. Riehle. 2017. Inner Source Definition,
Benefits, and Challenges. Comput. Surveys 49, 4 (2017).

6. K. Crowston, K. Wei, J. Howison, and A. Wiggins. 2012.
Free/Libre Open-source Software Development: What
We Know and What We Do Not Know. Comput. Surveys
44, 2 (2012), 7:1–7:35.

7. J. Dinkelacker, P. K. Garg, R. Miller, and D. Nelson.
2002. Progressive Open Source. In Proceedings of 24th
ICSE. 177–184.

8. T. Dybå and T. Dingsøyr. 2008. Strength of Evidence in
Systematic Reviews in Software Engineering. In
Proceedings of the International Symposium on ESEM.
178–187.

9. T. Dybå, T. Dingsøyr, and G. K. Hanssen. 2007.
Applying Systematic Reviews to Diverse Study Types:
An Experience Report. In Proceedings of 1st
International Symposium on ESEM. 225–234.

10. M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G.
Pappas. 2008. Comparison of PubMed, Scopus, Web of
Science, and Google Scholar: Strengths and Weaknesses.
FASEB Journal 22, 2 (2008), 338–342.

11. O. Gassmann and E. Enkel. 2004. Towards a Theory of
Open Innovation: Three Core Process Archetypes. In
Proceedings of R&D Management Conference.

12. G. Gaughan, B. Fitzgerald, and M. Shaikh. 2009. An
Examination of the Use of Open Source Software
Processes as a Global Software Development Solution for
Commercial Software Engineering. In Proceedings of
35th Euromicro Conference on SEAA.

13. T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. 2006.
A Model for Technology Transfer in Practices. IEEE
Software 23, 6 (2006), 88–95.

14. M. Grottke, L. M. Karg, and A. Beckhaus. 2010. Team
Factors and Failure Processing Efficiency: An
Exploratory Study of Closed and Open Source Software
Development. In Proceedings of 34th IEEE Annual
COMPSAC. 188–197.

15. V. K. Gurbani, A. Garvert, and J. D. Herbsleb. 2006. A
Case Study of a Corporate Open Source Development
Model. In Proceedings of 28th ICSE. 472–481.

16. V. K. Gurbani, A. Garvert, and J. D. Herbsleb. 2010.
Managing a Corporate Open Source Software Asset.
Commun. ACM 53, 2 (2010), 155–159.

17. Ø. Hauge, C. Ayala, and R. Conradi. 2010. Adoption of
Open Source in Software-Intensive Organizations - A
Systematic Literature Review. Information and Software
Technology 52 (2010), 1133–1154.

18. Ø. Hauge, C.-F. Sørensen, and A. Røsdal. 2007.
Surveying Industrial Roles in Open Source Software
Development. In Open Source Development, Adoption
and Innovation. Vol. 234. Springer, Boston, MA.

19. M. Höst and A. Oručević-Alagić. 2011. A Systematic
Review of Research on Open Source Software in
Commercial Software Product Development. Information
and Software Technology 53 (2011), 616–624.

20. M. Ivarsson and Tony Gorschek. 2011. A method for
evaluating rigor and industrial relevance of technology
evaluations. Empirical Software Engineering 16, 3
(2011), 365–395.

21. B. Kitchenham and S. Charters. 2007. Guidelines for
Performing Systematic Literature Reviews in Software
Engineering. Technical Report. Keele University and
Durham University.

22. S. Lim, T. Saldanha, S. Malladi, and N. P. Melville. 2009.
Theories Used in Information Systems Research:
Identifying Theory Network in Leading IS Journals. In
ICIS 2009 Proceedings. 91.

23. J. Lindman, M. Rossi, and P. Marttiin. 2008. Applying
Open Source Development Practices Inside a Company.
In Open Source Development, Communities and Quality.
Vol. 275. Springer, Boston, MA.

24. J. Lindman, M. Rossi, and P. Marttiin. 2010. Open
Source Technology Changes Intra-Organizational System
Development - A Tale of Two Companies. In
Proceedings of ICIS, paper 151.

25. J. Linåker, M. Krantz, and M. Höst. 2014. On
Infrastructure for Facilitation of Inner Source in Small
Development Teams. In Proceedings of the 15th
International Conference on PROFES. 149–163.

26. G. Martin and A. Lippold. 2011. Forge.mil: A Case
Study for Utilizing Open Source Methodologies Inside of
Government. In IFIP Advances in Information and
Communication Technology, Vol. 365. 334–337.

27. C. Melian and M. Mähring. 2008. Lost and gained in
translation: Adoption of open source software
development at Hewlett-Packard. In Open Source
Development, Communities and Quality. Vol. 275.
Springer, Boston, MA, 93–104.

28. M. B. Miles and M. A. Huberman. 1994. Qualitative
Data Analysis: An Expanded Sourcebook. SAGE.

29. L. Morgan, J. Feller, and P. Finnegan. 2011. Exploring
Inner Source as a Form of Intra-Organisational Open
Innovation. In Proceedings of ECIS 2011, Paper 151.

30. A. Neus and P. Scherf. 2005. Opening minds: Cultural
change with the introduction of open-source collaboration
methods. IBM Systems Journal 44, 2 (2005), 215–225.

31. Tim O’Reilly. 2000. Open Source and OpenGL. (2000).
http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/

opengl_1200.html

32. W. J. Orlikowski and C. S. Lacono. 2001. Research
Commentary: Desperately Seeking the ’IT’ in IT
Research – A Call to Theorizing the IT Artifact.
Information Systems Research 12, 2 (2001), 121–134.

33. A. Oručević-Alagić and M. Höst. 2016. A Two Phase
Case Study on Implementation of Open Source
Development Practices within a Company Setting. In
Proceedings of International Conference on SEKE.
63–70.

34. N. Paternoster, C. Giardino, M. Unterkalmsteiner, T.
Gorschek, and P. Abrahamsson. 2014. Software
Development in Startup Companies: A Systematic
Mapping Study. Information and Software Technology 56,
10 (2014), 1200–1218.

35. M. Pulkkinen, O. Mazhelis, P. Marttiin, and J. Merliuoto.
2007. Support for Knowledge and Innovations in
Software Development – Community within Company:
Inner Source Environment. In Proceedings of 3rd
International Conference on WIST. 141–150.

36. D. Riehle, M. Capraro, D. Kips, and L. Horn. 2016. Inner
Source in Platform-based Product Engineering. IEEE
Transcation on Software Engineering 42, 12 (2016),
1162–1177.

37. D. Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski,
Y. Natchetoi, B. Naveh, and T. Odenwald. 2009. Open
Collaboration within Corporations Using Software
Forges. IEEE Software 26, 2 (2009), 52–58.

38. M. Ripatti, R. Kilamo, K. Salli 1, and T. Mikkonen. 2015.
Internal Marketplace as a Mechanism for Promoting
Software Reuse. In Proceedings of 14th SPLST. 119–133.

39. C. Robson. 2011. Real World Research. John Wiley &
Sons.

40. S. Sharma, V. Sugumaran, and B. Rajagopalan. 2002. A
Framework for Creating Hybrid-Open Source Software
Communities. Information Systems Journal 12, 1 (2002),
7–25.

41. K.-J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and B.
Fitzgerald. 2014. Key Factors for Adopting Inner Source.
ACM Transaction on Software Engineering and
Methodology 23, 2 (2014).

42. K.-J. Stol, M. A. Babar, P. Avgeriou, and B. Fitzgerald.
2011. A Comparative Study of Challenges in Integrating
Open Source Software and Inner Source Software.
Information and Software Technology 53, 12 (2011),
1319–1336.

43. K.-J. Stol and B. Fitzgerald. 2015. Inner Source –
Adopting Open Source Development Practices in
Organizations. IEEE Software 32, 4 (2015), 60–67.

44. M. Theunissen, D. Kourie, and A. Boake. 2008.
Corporate-, Agile-, and Open Source Software
Development: A Witch’s Brew or an Elixir of Life.
Balancing Agility and Formalism in Software
Engineering 5082, 84–95 (2008).

45. R. Torkar, P. Minoves, and J. Garrigós. 2011. Adopting
Free/Libre/Open Source Software Practices, Techniques
and Methods for Industrial Use. Journal of the
Association for Information Systems 12, 1 (2011).

46. F. van der Linden. 2009. Applying Open Source Software
Principles in Product Lines. UPGRADE 10, 3 (2009),
32–40.

47. F. van der Linden, B. Lundell, and P. Marttiin. 2009.
Commodication of Industrial Software: A Case for Open
Source. IEEE Software 26, 4 (2009).

48. P. Vitharana, J. King, and H. S. Chapman. 2010. Impact
of Internal Open Source Development on Reuse:
Participatory Reuse in Action. Journal of Management
Information Systems 27, 2 (2010), 277–304.

49. J. Wesselius. 2008. The Bazaar Inside the Cathedral:
Business Model for Internal Markets. IEEE Software 25,
3 (2008), 60–66.

http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/opengl_1200.html
http://archive.oreilly.com/pub/a/oreilly/ask_tim/2000/opengl_1200.html

	Introduction
	Related Work
	Research Methodology
	Search Strategy
	Selection Strategy
	Quality Assessment
	Data Extraction and Synthesis

	Characteristics of Primary Studies
	Search Results
	Publication Sources and Years
	Quality of the Primary Studies

	Findings
	RQ1 What research methods have been used in studies related to ISS development?
	RQ2 What types of contributions are provided by the studies on ISS development?
	RQ3 What are the reported benefits and challenges associated with an ISS development?
	Software Development
	Process Management
	Tools and Technology
	Managerial and organisation

	Discussion
	Implication for Research and Practice
	Threats to Validity

	Conclusion and Future Work
	Acknowledgments
	References

