
Challenges in the collaborative development of a complex
mathematical software and its ecosystem

Théo Zimmermann
πr 2, Inria

IRIF, Université Paris-Diderot
Paris

theo@irif.fr

ABSTRACT
This is a contribution to the OpenSym 2018 Doctoral Symposium.
This paper describes my PhD objectives. As an insider in the Coq
development team, I’ve worked at making the release process of
the Coq proof assistant smoother and more automated, at open-
ing the development to external contributions, and at shaping the
ecosystem around Coq. I’m intending to evaluate how well-known
software engineering techniques and results about open source soft-
ware communities apply in the specific case of the proof assistant
I’m studying.

CCS CONCEPTS
• Software and its engineering → Open source model; Main-
taining software; Documentation; Software version control;

KEYWORDS
Open source software; release management; mathematical software;
Coq; proof assistant.
ACM Reference Format:
Théo Zimmermann. 2018. Challenges in the collaborative development of
a complex mathematical software and its ecosystem. In OpenSym ’18: The
14th International Symposium on Open Collaboration, August 22–24, 2018,
Paris, France. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3233391.3233966

1 BACKGROUND
Coq is a proof assistant or interactive theorem prover, i.e. a soft-
ware to write interactively mathematical proofs and to verify them
automatically. It originated as a research project that started in
1984.

It regularly gained in popularity with important milestones like
in 2004 when Georges Gonthier and Benjamin Werner completed
their mechanized proof of the four color theorem using the Coq
proof assistant. It was also used by many researchers to formally
verify software systems. In 2013, its initial developers were awarded
the ACM Software System Award.

Coq is now one of the most used proof assistants. It is massively
taught in undergraduate and graduate classes at many universities.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
OpenSym ’18, August 22–24, 2018, Paris, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5936-8/18/08.
https://doi.org/10.1145/3233391.3233966

It serves as the basis of large research projects involving dozens of
researchers and receiving millions in funding.1 It is also a tool for
industrial verification projects.

This has some consequences for Coq. On the one hand, it is
not just a research prototype anymore but a software on which
the work of many people depends. It must therefore meet their
expectations (in terms of compatibility between versions, improved
performance, improved support for some usages) while continuing
at the same time to be an object of study for researchers. On the
other hand, it now has a large community of users which can be
seen as a crowd of potential contributors.

The problem I am thus interested in is how the development of
Coq can adapt to meet the new expectations while taking the most
of the new opportunities arising from a more open development.

As an insider in the Coq development team since 2015, I have
been a direct witness and important actor in the evolution towards a
more open development, which encourages external contributions.

2 GOALS
The evolution in the development process to guarantee more sta-
bility had started before I arrived with the nomination of a “release
manager” and the objective to have time-based release cycles. I
was, nevertheless, a witness of the first time-based release and a
main actor of the second and third ones. My first contribution is
my participation to this evolution. In my thesis, I will analyze the
evolution and evaluate its consequences on the development of
new features (was it hindered? did it impact the research around
Coq?) and on the satisfaction of big users’ needs (has the system
gained in stability and has this been useful to them?).

The real opening of the development of Coq (the proof language
and the software itself by opposition to extensions such as libraries
or plugins) to external contributions started with the first Coq Cod-
ing Sprint (later renamed Coq Implementors Workshop) to which I
was a participant. In the following years, the development became
more and more transparent and open to external contributions.
My second contribution is my action in favor of such external
contributions and a more open development team. In my thesis,
I will analyze this evolution and evaluate how it helped get valu-
able contributions from new active contributors (how did it help
get new contributors, who were they, and how useful were their
contributions given the inherent complexity of the Coq software?).

The ecosystem around the Coq proof assistant (in which I in-
clude external packages such as libraries, plugins and editor support
packages, external documentation in the form of tutorials, books,
1The DeepSpec project https://deepspec.org involves four top US universities, lists 78
collaborators and received $10 million in funding from the NSF.

https://doi.org/10.1145/3233391.3233966
https://doi.org/10.1145/3233391.3233966
https://doi.org/10.1145/3233391.3233966
https://deepspec.org

OpenSym ’18, August 22–24, 2018, Paris, France Théo Zimmermann

Q&A. . .) evolved as well, as a consequence of the growth of the user
community and changes in the distribution of Coq packages that
had started before I arrived.We passed from a centralized model to a
more distributed model. In the centralized model, library and plugin
developers were solicited to send their packages to the Coq devel-
opment team who would then take care of maintaining them and
distributing them further (in an archive of so-called “user-contribs”).
In the new model, they are self-maintaining their packages and en-
couraged to directly submit them to a package repository to reach
users who are then able to install them using a specific package
manager. My third contribution will be to the organization and
shaping of this ecosystem by involving the community more and
more, especially in the long-term maintenance of Coq packages and
their diffusion. I have launched a project for collaborative long-term
maintenance of Coq packages called coq-community2 inspired by
the similar and already successful elm-community.3

A cross-cutting goal is to evaluate how well-known software
engineering techniques and results about open source software
communities apply in the specific case of the proof assistant I am
studying.

3 METHODS
To propose amendments to our development processes, I observe
what issues arise with the previous way of doing. For instance, a
lot of breaking changes were implemented and merged without
being documented in the changelog, just because developers and
reviewers forgot, and we got complaints from users. Then, most of
the time, I propose and I test alternative ways based on standard
practices in open source development. In the above example, there
were several possible solutions (used in other projects): enforcing
that pull requests always come with a changelog entry by adding
an automatic check; automatically generating a changelog using
information from GitHub pull requests and commit messages; or
simply reminding this requirement to pull request authors using
a pull request template with a few checkboxes. I implemented
the latter because it was the lighter solution and it turned out to
be pretty efficient (although exact measurements are still to be
done). However, there is still a problem with some experimented
developers stripping the template without reading it because they
think it’s not for them, and we will see in the future if there is a
need to move to one of the other two solutions.

Furthermore, the open source way is in constant evolution itself
so there is no definite best solution, and all open source development
teams are experimenting a bit at the same time. It is quite useful to
keep informed of what others are doing, and to be ready to reuse
their tools (and to share ours). The GitHub platform itself, which
we are using, is evolving quite fast these days, and we regularly
experiment with new features to see how they fit in our practices
and if they are of any help.

Sometimes, just reporting a problem in our development pro-
cesses and having it discussed is enough for good ideas to emerge.
This kind of meta-issues really took off after the move from our
old bug tracker to GitHub issues (described in the results section).
Documenting processes provides clear and immediate benefits such

2https://github.com/coq-community
3http://elm-community.github.io/

as helping new contributors gain in confidence or making it easier
to swap some special roles like “release manager”. But it can also
be a good opportunity to discuss these processes. Indeed, more
senior developers are often questioning the adequacy of the new
processes and lack of proper communication around some changes
sometimes created frustration or confusion.

I also intend to have repetitive tasks automated more systemati-
cally. I was particularly inspired in this aspect by the talk “Cyborg
Teams: Training machines to be Open Source contributors” by Stef
Walter at FOSDEM’18. Lots of such automations are natively pro-
posed by the GitHub platform while some others can be easily
added because they have been implemented and distributed by
other developers. However, we must be ready to adapt them or
develop our own when what is proposed cannot fit in easily in our
processes, would impose too radical changes or wouldn’t help with
respect to our objectives. For instance, I created a methodology to
track pull request backporting using a GitHub project (a Kaban-like
board with columns and cards). When GitHub added automation
features to these projects, I started using them to manage this more
efficiently, but because these features were quite limited, I ended
up developing a bot that moves cards around for me and saves me
a lot of time. This will also make it easier to pass on this role to
someone else.

To involve the user community more, the best way is sometimes
to directly call for contributions: on Coq-Club, the Coq users’ mail-
ing list, like I did once to get a volunteer to migrate the Coq FAQ,
which was bitrotting, to the Coq wiki; or at the Coq workshop, like I
intend to do to find participants to the coq-community collaborative
maintenance project.

This collaborative maintenance project is also giving me a dif-
ferent perspective and I intend to conduct some improvement up-
stream to help package maintainers. Two specific questions are how
to setup CI for testing these packages with various versions of Coq;
and how to distribute Coq packages in the most efficient way. I’m
currently exploring a new approach to these two questions based
on the Nix package manager.4

I have been teaching Coq for two years and this too is giving me
a different perspective. Next year, I’d like to push my students to
contribute to Coq at their own level: that is by highlighting what
are the common problems that beginners encounter when they use
Coq for the first few months. This kind of feedback is very valuable
and usually quite difficult to get because users who open most of
the issues are users who feel already quite confident about their
knowledge of the system.

To evaluate the impact of changes in our processes, I would
like to get objective measures as often as possible. Most of the
time, I will collect these indicators from gross statistics obtained
through GitHub APIs. Ideally, we want to compare them both to the
same statistics before a change was implemented and to equivalent
statistics over other open source projects when we can extract such
statistics from previous research papers. For instance, there is an
interesting analysis to be done on the predicting factors of the time
it will take for a pull request to get merged, and a comparison to

4https://nixos.org/nix/

https://github.com/coq-community
http://elm-community.github.io/
https://nixos.org/nix/

Challenges in the collaborative development of a complex mathematical software OpenSym ’18, August 22–24, 2018, Paris, France

do with the general results obtained in “Wait for It: Determinants
of pull request evaluation latency on GitHub” by Yu et al.5

When this is necessary, this should be augmented with quali-
tative evaluation by interviewing interested parties or by detailed
exploration of specific examples.

Literature search and exploration of other important open source
projects will also get a central place in my thesis to be able to
present a comparative evaluation of our methods and to import
well functioning methods from other projects.

4 RESULTS
As mentioned in the background section, I have contributed to the
new release process: I encouraged the use of milestones and labels
(which took much more importance after the migration to GitHub
issues, see below); and, more importantly, I was put in charge of
the stable v8.7 branch at a time when we switched from a model
of preparing bug fixes for stable branches and merging them into
the development branch to a model where almost all pull requests
target the development branch and bug fixes and documentation
updates are backported to the active stable branch. In this position,
I participated in the beta and final releases of Coq version 8.7, and
I managed the patch-level releases for this version. This gave me
a good overview of the whole release process, which I formalized
and documented.

Another evolution towards more stability was the switch to a
pull-based development model (including for core contributors).
This allowed for better code reviews and systematic automatic
testing (a.k.a continuous integration). In a first phase of this switch,
which spanned two releases and more than a year, a single person
was in charge of merging all pull requests after ensuring they had
been reviewed. This was too inefficient and too time-consuming
for the person in charge, so we recently switched to a distributed
merging process based on maintainership of components. I helped
put in place this new process. While it had clear immediate benefits,
we can start to observe patterns on the time it takes for a pull
request to get merged depending on the component it affects (and
thus whose maintainer is in charge). It will be interesting to do a
detailed data analysis of this switch and its consequences.

After observing the many drawbacks of our previous bug tracker,
I managed to convince the rest of the development team to move
to GitHub issues. One important aspect of the migration was to
keep the existing bugs and their bug numbers as often as possible. I
conducted themigration by adapting a script that had been designed
for much smaller scale migrations and I used it successfully to
migrate the 4900 existing bug reports to GitHub issues. Only 500
bug reports, whose numbers were taken by existing pull requests,
had to be renumbered. I documented this experience in a blog
post available at https://theoz.im/bugzilla and shared the migration
script.6 I think this migration had a positive impact both on the
opening to new contributors (as most of them already had a GitHub
account, especially the students and the contributors to other open
source projects) and on existing developers. One of my arguments
in favor of the migration was that communication was hindered by
5https://doi.org/10.1109/MSR.2015.42
6My improvements are now being integrated upstream, thanks in particular to the
involvement of a reader of my blog post who used my improved version of the script
to perform a similar migration.

the heavy user interface of the previous bug tracker and it seems
indeed that online communication among developers was more
fluid afterwards. This would however require a real evaluation
which I plan to conduct.

5 MY QUESTIONS
My advisor has no particular experience in research on open col-
laboration (nor software engineering): he is rather a specialist of
the Coq proof assistant. Therefore, it is very important for me to
get feedback and advice on my methods.

I am also interested to learn how useful my case study would be
judged by specialists of the open collaboration domain and to get
advice on where and how to publish relevant parts.

https://theoz.im/bugzilla
https://doi.org/10.1109/MSR.2015.42

	Abstract
	1 Background
	2 Goals
	3 Methods
	4 Results
	5 My questions

