
The Radeox Wiki Render Engine

Matthias L. Jugel
Fraunhofer Institute for Computer Architecture

and Software Technology
Kekuléstr. 7

12489 Berlin, Germany

matthias.jugel@first.fraunhofer.de

Stephan J. Schmidt
Fraunhofer Institute for Computer Architecture

and Software Technology
Kekuléstr. 7

12489 Berlin, Germany

stephan.schmidt@first.fraunhofer.de

ABSTRACT
The Radeox Wiki markup render engine is a basic compo-
nent for the construction of a Wiki or any system that wishes
to integrate basic Wiki functionality. With the availablility
of such a component the compatibility of different Wiki sys-
tems can be improved and the simplicity of the Wiki way
is now ready for deployment in business applications. This
paper explains how this component emerged from its host
Wiki SnipSnap and how it enables software developers to
integrate the Wiki way into their own implementations and
other software.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; I.7.2 [Doc-
ument and Text Processing]: Document Preparation

General Terms
Wiki, Text Rendering, Software Components

Keywords
wiki, markup, conversion

1. INTRODUCTION
At first, Radeox [1] was not a standalone software com-

ponent, but rather the markup translator for SnipSnap [2].
SnipSnap is a Java based Wiki implementation developed
by the Fraunhofer Institute for Computer Architecture and
Software Technology. Its background stems from knowledge
management and is intended to be part of projects research-
ing the benefits of knowledge based technologies in the soft-
ware development process. This integrative approach re-
quired a componentized and easily reconfigurable architec-
ture.

SnipSnap gained a fair amount of interest from researchers
as well as companies looking for a Java based implementa-
tion with special support for the software development pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym’06, August 21-23, 2006, Odense, Denmark.
Copyright 2006 ACM 1-59593-413-8/06/0008 ...$5.00.

cess. It is available as an Open Source project under the
terms and conditions of the GNU General Public License.

This enabled developers to learn from the code and to con-
tribute. However, the viral effect of the GPL kept commer-
cial companies from using SnipSnap software components.
Upon a request by Atlassian, the makers of Confluence [3],
it was decided to extract the Wiki markup rendering from
SnipSnap and to distribute the sources as a standalone soft-
ware component, called Radeox. It is available under a
relaxed, BSD style, license. This enabled many projects
like XWiki [4], Blojsom [5] and others [6][7][8][9][10] to use
Radeox and to focus on important features of their Wiki
implementations.

2. MOTIVATION
All Wikis have a similar architecture consisting of a web

based user interace, a middle layer of wiki aware content
handling logic and a storage backend. An example of a
Wiki architecture is shown in the Wiki Architecture figure.
Although it is very common to use standard frameworks for
the user interface as well as the storage backend the wiki
content handling is usually custom made software.

The drawbacks of custom made Wiki handling software
are obvious. Not only do all the different implementations
have different semantics in how they handle Wiki content,
they also bind users technologically to proprietary software.
Also, the unavailability of a Wiki content renderer as a soft-
ware component is a disadvantage for wiki technology in
general.

Most Wiki implementations only understand one special
flavor of Wiki markup and it is usually difficult to switch
to a different flavor without losing content. However, the
harmonization of the markup is an important issue within
the Wiki community.

Providing software components for handling Wiki markup
would be a benefit for Wiki and application developers.
Since many different flavors exist such a component must
be able to handle the rendering as well as the translation
between them.

Before describing the architecture and application of Radeox
we will take a look at Wiki markup as well as different ways
to handle the translation into HTML or other output for-
mats. At the end of this section the benefits and drawbacks
of the different methods are discussed.

2.1 Wiki Markup
Basic Wiki markup consists of tags found in plain text

documents that denote a change in the presentation of the

33

Web Framework

Storage Backend

Markup Rendering
Engine

Wiki Existence
Manager

Glue

JSP, JSF, WebWork,
Struts, Wicket

Radeox

Files, XML,
JDBC, JCR

Figure 1: Wiki Architecture

enclosed or following text. Simple tags are commonly avail-
able for bold, italic and strike-through text:

__bold text__, ~~italic text~~, --deleted text--

For general text structurization heading styles as well as
other markup similar to HTML tags are available. These
markup tags are usually valid for the rest of a line or on
their own, like in the case of a horizontal rule.

Somewhat more complicated markup exists for lists, ta-
bles and macro-style tags. While simple markup, head-
ings, lists and tables are common text components and can
usually be implemented by simple replacement techniques,
macros allow the implementor of a Wiki more freedom in
how content enclosed by a macro is rendered. For example,
in SnipSnap macros allow the inclusion of special content
into the output, such as the rendering of tree based data
using a special notation (see figure 2):

{graph} (root (child1) (child2 (child3))) {graph}

Figure 2: graph macro result

Many implementations support different flavors of the ba-
sic markup including headings and lists. Others addition-
ally have markup similar to SnipSnaps macros. However,
the latter is usually incompatible to most of the other Wiki
implementations.

There has been quite some effort to standardize Wiki
markup and to make at least the basic markup interopera-
ble, the latest started after WikiSym 2005 [11].

2.2 Rendering Methods

2.2.1 Custom Markup Parsing
Implementations of manual parsers are most common.

Even Wikipedia [13] with a demand for high performance

uses a custom written PHP based parser. Custom imple-
mentations can be very flexible as they allow the use of side
effects, like breaking out of the parsing to do collection for
a table of contents. The structure of such a parser is usu-
ally similar to what parser generators produce by recursively
looking for begin and end marks and exchanging the text in-
between using rules.

2.2.2 Regular Expression Parser
Regular expressions can be used whenever text portions

have to be replaced using matching algorithms. These ex-
pressions are very powerful and have good performance.
Since they are not aware of a hierarchy, regular expressions
simply match everything available and the developer decides
the order of replacing and changing matched text.

2.2.3 Parsers Using Context Free Grammars
From a software developer’s point of view using a parser

generator is preferable over any other custom made parser.
Using a parser generator allows the definition of a grammar
for the markup language with strict syntax checking . These
parsers generally have excellent performance and work by
presenting the developer the text contents found by defined
syntactical constructs.

2.2.4 Discussion of the Methods
For quick implementations a custom markup parser may

be preferable over regular expression or generated parsers.
Results are available in a short time and sufficient for many
Wiki implementations.

However, the flexibility such a custom parser offers also
poses a threat to the whole implementation. Custom parsers
are prone to errors. Maintenance and understanding are
time-consuming. In addition, these parsers can be very in-
efficient when working with large amounts of text. That
is reason enough to consider generated parsers or regular
expressions for handling Wiki markup.

For Radeox, the decision to use regular expressions has
two reasons. First of all, regular expressions can be ex-
changed relatively easy during runtime. This is hardly pos-
sible with generated parsers and even more difficult using a
custom parser. Second, regular expressions are explicitely
made for efficiently matching text.

These benefits outweigh even the drawback that there is
no control over the context where a match for some Wiki
markup occurs in the text. Simple markup is declared by a
match and replacement rule and more complicated markup,
like macros, allows the execution of arbitrary code. Using
Radeox it is possible to sort the rules to define preference of
the matching within the rendering pipeline.

3. ARCHITECTURE OF RADEOX
The following chapter describes the architecture of a Wiki

markup renderer using Radeox as an example. First, the
pipeline architecture is explained and how its behaviour can
be adapted to the needs of a specific Wiki implementation.

3.1 Rendering Pipeline
A Wiki Render Engine basically transforms patterns into

other patterns as described above. Each transformation
should be independent, so the transformations can be changed
and extended independently. New transformations can be
added without influencing other code. For extending the

34

Wiki markup with special features like the graph macro,
a simple extension mechanism is needed. This mechanism
should be implemented as a extension of the transformation
mechanism.

Filter

Macro
Filter

Filter

Macro

Macro

Macro

Macro

Render
Engine

Filter
Pipe Macros

FilterContext MacroParameter

Component
Container

(PicoContainer,
Spring, J2EE)

Render
Engine

Filter

Figure 3: Radeox Architecture

3.1.1 Filters
The described transformations can be implemented with

filters. A filter takes an input pattern and transforms the
pattern into some output. In Radeox filters are the basic
operating unit. Those filters take text input and create text
output. This mechanism is too low level for developers to
create useful filters. Therefore higher abstractions should
be added. In Radeox these higher abstractions are regular
expression filters. They use patterns expressed as regular
expressions to transform the input into some output. They
cover most of the wiki markup.

3.1.2 Macros
The extensions for special applications can be realized

with macros. Macros are simple extensions for dynamic be-
havior and do not necessarily transform input into output,
like filters. They take some information form a source and
inject the information into the wiki page. Usage scenarios
include displaying currently active users, browsing a source
code repository or showing Google adsense advertisements.
As with the graph macro they do not need to render text
output but can use graphics or non-visible semantic web
markup. Macros are referred by their name and beside the
current render context they can be customized with parame-
ters. In Radeox macros are easily implemented by inheriting
from a base class.

3.2 Selecting Radeox Behavior
The described architecture and extensions are aimed at

developers. But some users of a wiki render engine might
want to customize the engine for their needs without writing
code. A render engine therefore needs to be customizable
with a simpler mechanism.

Locales are a successful application developmen strategy
to customize software with different languages. Most lan-

guage frameworks support this in one way or another. See-
ing render engine customizations and different wiki markups
the same way as different languages like German and En-
glish in the application development domain, locales are an
ideal solution to customzing wiki engines without the need
to write code. In Radeox most markup patterns and out-
put results are stored in languages bundles. So adapting
Radeox to one’s needs is as simple as replacing the locale files
with custom markup and transformation rules. Markup, like
Wikipedia or Textile [12], can be easily supported with dif-
ferent locales.

How different the Wiki markup styles are shows the fol-
lowing example of the markup dialects from Texttile, Wikipedia
[13] and Radeox:

h1. Textile Header 1

h2. Textile Header 2

h3. Textile Header 3

==Wikipedia section==

===Wikipedia Subsection===

====Wikipedia Sub-subsection====

1 Radeox First Order Heading

1.1 Radeox Second Order Heading

1.1.1 Radeox Third Order Heading

3.3 How Radeox fits in a wiki architecture
An expressive Wiki render engine is the heart of each wiki

implementation. The render engine encapuslates the wiki
domain. Around this engine the other parts of a wiki a very
generic and can be found in weblog, content management or
document management systems.

A wiki needs four applications parts: The web frontend or
GUI part, the storage backend, the Wiki render engine and
some glue code to connect the other parts. The web frontend
needs views and forms to display, edit and create new wiki
pages and can easily be implemented with web frameworks
like JSF [14], Struts [15] or WebWork [16]. The storage
backend is most of the time a thin database layer or object
relational mapper. Some implementations use XML storage
in files or databases. New wiki implementations should use
higher abstractions which suit their content storage needs
better.

One such layer ist the common content managment API
JSR [22] which abstracts common backends like databases
for content storage. With such a backend content reposi-
tories of wikis, content and document management systems
can be consolidated into one backend. With Radeox the
wiki render engine part as the heart of the wiki implemen-
tations needs only a very thin adaption layer for integration.
Some glue code to integrate the three other parts of a wiki
application finishes the implementation.

For example, it was very simple to write a wiki applica-
tion with Grails [17]. This is a web framework combined
with an easy to use object storage mechanism. With the
help of Radeox and the Groovy [18] scripting language as
the glue code, it took the authors around thirty minutes to
implement a simple wiki.

3.4 Example
A wiki render engine needs to be simple to use with a

small and clean but powerfull API. This enables developers
to integrate the render engine in their applications with thin

35

adaption layers and will result in higher acceptance of the
render engine. In Radeox only two classes are needed for
rendering wiki markup:

RenderContext context = new BaseRenderContext();

RenderEngine engine = new BaseRenderEngine();

String result = engine.render("__Radeox__", context);

The rendering takes part in the render method of the
RenderEngine object. Filters and macros in Radeox need
a context which is supplied to the render call. Radeox is im-
plemented with Java interfaces to make it customizable and
parts exchangable, but delivers default implementations like
BaseRenderEngine and BaseRenderContext. The engine ex-
ecutes all known filters and all known macros and transforms
Radeox into HTML: <b class=”bold”>Radeox.

4. FUTURE WORK

4.1 Markup Bundles
It has become apparent that while most users of Radeox

use the bundled markup it would make sense to provide a set
of bundles that contain the most commonly used markups.
Especially since the popularity of Wikipedia a Wikipedia
bundle should be standard. Additionally, bundles for con-
version between different markup syntax might prove use-
ful and would be a powerful tool to aid compliance testing
should there be a standard Wiki markup language.

4.2 Better Context Sensitivity
As discussed in the rendering methods, regular expression

matching is not context sensitive in that it is never known
what other markup might surround the current match. Pro-
viding such information to implementors of complex rules
and macros would improve the text conversion results. It
would also allow developers to selectively execute macros
depending on the current context.

4.3 Combined Parser
Since very early implementations of Radeox an improve-

ment was discussed, that would combine generated parsers
with regular expression matching: a runtime customizable
generated parser. Such a software component would allow
to create a high performance parser with strict syntax and
context sensitive execution of matching rules while main-
taining the flexibility of changing the runtime behavior of
the rules.

An important goal here is to keep the simple way to create
matching rules. This is, unfortunately, currently not possi-
ble with existing parser generators. Also, all discussions
with parser generator experts lead us to the conclusion that
such a piece of software is possible. However, parser research
has a different focus.

5. CONCLUSION

5.1 Simple to Integrate
Our own work with Radeox and comments from the user

community show that a software component for rendering
Wiki markup into HTML or other formats was necessary.
The componentized architecture makes it possible to inte-
grate Radeox quickly into all kinds of applications. This
combined with the great configurability makes Radeox a

powerful tool with chameleon-like features with respect to
Wiki markup.

5.2 Ready for Business Applications
This simplicity combined with the power of a being a busi-

ness level component makes Radeox ready to be integrated
and deployed in business applications. Even though there
is still much to be desired, as described in future work, the
flexibility of the Radeox framework together with the lib-
eral BSD like license will help the Wiki way into business
for better content or knowledge management.

6. RELATED WORK
The Radeox project aims at providing a software com-

ponent for generic translation of Wiki markup into other
languages for Java. Other projects exist, such as anyMeta
Wiki [19], a markup to HTML translator. It aims at pro-
viding a two-way translation of markup to HTML and back.
Like PmWikis [21] parser and the Text Wiki [20] component
it is a PHP based implementation. A common feature of all
these Wiki parser implementations is that they use regular
expression rules to translate the markup into a designated
target language.

All efforts try to replace the custom made Wiki parsing
layer with standardized components for selected program-
ming languages. This will help in the standardization and
harmonization of Wikis which is an important precondition
for industry acceptance.

7. REFERENCES
[1] Radeox; A wiki markup render component; http://radeox.org

[2] SnipSnap; Fraunhofer FIRST, Matthias L. Jugel and Stephan
J. Schmidt;http://snipsnap.org

[3] Confluence, Atlassian Software Systems Pty Ltd;
http//confluence.atlassian.com

[4] XWiki; http://xwiki.org

[5] Blojsom; http://www.blojsom.com

[6] Orionsupport; http://orionsupport.com

[7] Galena; http://galena.sphene.net

[8] Biscuit; http://biscuit.javanicus.com

[9] Blogunity; http://blogunity.sourceforge.net

[10] Pebble; Blogging Tools written in Java;
http://pebble.sourceforge.net/

[11] WikiSym 2005; Conference Wiki; http://wikisym.org/ws2005

[12] Textile; A Humane Web Text Generator;
http://www.textism.com/tools/textile/

[13] Wikipedia Wiki
Markup;http://en.wikipedia.org/wiki/How to edit a page

[14] J2EE JavaServer Faces Technology;
http://java.sun.com/javaee/javaserverfaces/

[15] Apache Struts; http://struts.apache.org/

[16] WebWork; http://www.opensymphony.com/webwork/

[17] Grails Application Framework; http://www.grails.org

[18] Groovy Scripting Language; http://groovy.codehaus.org

[19] anyMeta Wiki; http://source.mediamatic.nl; Mediamatic wiki
translator

[20] Text Wiki; A php wiki markup parser;
http://wiki.ciaweb.net/yawiki/index.php?area=Text Wiki

[21] pmWiki; http://www.pmwiki.org, rule based wiki translator

[22] JSR-170; Content Repository for Java technology API;
http://www.jcp.org

[23] Wicket; http://wicket.sourceforge.net/

36

