
The Impact of Automatic Crash Reports on Bug Triaging
and Development in Mozilla

Iftekhar Ahmed
Oregon State University

School of Electrical Engineering and
Computer Science

Corvallis, USA
ahmedi@onid.oregonstate.edu

Nitin Mohan
Oregon State University

School of Electrical Engineering and
Computer Science

Corvallis, USA
nitinmohan.osu@gmail.com

Carlos Jensen
Oregon State University

School of Electrical Engineering and
Computer Science

Corvallis, USA
cjensen@eecs.oregonstate.edu

ABSTRACT
Free/Open Source Software projects often rely on users
submitting bug reports. However, reports submitted by novice
users may lack information critical to developers, and the
process may be intimidating and difficult. To gather more and
better data, projects deploy automatic crash reporting tools,
which capture stack traces and memory dumps when a crash
occurs. These systems potentially generate large volumes of
data, which may overwhelm developers, and their presence may
discourage users from submitting traditional bug reports. In this
paper, we examine Mozilla’s automatic crash reporting system
and how it affects their bug triaging process. We find that fewer
than 0.00009% of crash reports end up in a bug report, but as
many as 2.33% of bug reports have data from crash reports
added. Feedback from developers shows that despite some
problems, these systems are valuable. We conclude with a
discussion of the pros and cons of automatic crash reporting
systems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Debugging aids, Tracing.

General Terms
Management, Measurement, Reliability.

Keywords
Free/Open Source Software, FOSS, Open Bug Reporting,
Debugging, Testing, Automatic Crash reporting

1. INTRODUCTION
Free/Open Source Software (FOSS) projects often follow
different development practices than traditional closed source
projects. One of the reasons for such differences is that FOSS
contributors are often volunteers working together across the
world. The lack of physical colocation, resources, and often ad-
hoc project planning, calls for different development and project
management practices, including bug triaging.

Effective bug reporting and triaging is vital to any software
project. The idea that enough eyes make all bugs shallow [25]
drives FOSS projects to involve as many people as possible in

bug reporting and triaging. While there are advantages to broad
involvement, there are also downsides. Reports submitted by
less experienced users can be incomplete or inaccurate [6].
Users may not use the right terms to describe a bug, which can
make it hard for developers to find the bug. A study by
Davidson et al. [12] found that as the size of the reporting
community grows, so does the ratio of duplicate reports. Though
duplicate reports are not always problematic [6, 23], duplicates
represent a waste of time and effort. Though projects publish
guidelines for submitting bug reports, training and coordinating
contributors is often an overwhelming task.

There have been a number of studies examining the bug triaging
processes of FOSS projects. Bettenburg et al. [7] surveyed 466
developers and users of the Apache, Mozilla and Eclipse
projects and found a mismatch between what users reported and
what developers found useful in bug reports. Breu et al. [8]
analyzed questions posed in 600 bug reports in the Mozilla and
Eclipse projects to understand how developers and reporters
collaborate. Both studies found a need for better ways to handle
bugs and enhancing the quality of bug reports.

To gather more data, some projects have turned to automatic
crash reporting systems. These systems are invoked when a
process crashes. They gather stack traces, memory dumps,
identifying the thread that caused the crash, product information,
etc., and prompt users to submit these. Automatic crash
reporting tools often ask users to add more descriptive
information about the crash in order to assist developers in the
triaging process, but there is no data on how many users provide
such details, or how useful these details are in bug triaging.

The terms “crash report” and “bug report” have distinct and
different meanings. “Crash reports” refer to automatic error
information gathered when a process crashes or quits
unexpectedly. A “bug report” refers to a report filed manually
by a user or developer about a fault or flaw of any type
experienced with the software.

We are interested in understanding how automated crash
reporting fits into current bug reporting and triaging practices,
and if and how they add value to developers. To the best of our
knowledge, no such study has been done. These are important
questions, as deploying a crash reporting system is not without
risks or costs. While these systems increase the volume of raw
data available to developers, this does not necessarily translate
to more actionable information. The majority of crash reports
refer to a small number of common problems.

Furthermore, a crash reporting system could lead users to stop
submitting traditional bug reports, feeling that they have already
contributed. This would thus lead to a net loss of information for
developers. This is especially true, as the issues covered by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
OpenSym '14, August 27 - 29 2014, Berlin, Germany
Copyright 2014 ACM 978-1-4503-3016-9/14/08 $15.00.
http://dx.doi.org/10.1145/2641580.2641585

crash reports do not fully overlap with those in bug reports, the
latter of which also tend to include usability issues and missing
features. To this end our research questions are:

RQ1. What impact do automatic crash reporting systems have
on FOSS projects?

RQ2. What overhead do automatic crash reporting tools add to
the bug triaging process?

RQ3. Do crash reporting systems discourage participation in the
bug reporting process?

Given that there is a lot of diversity within the FOSS
community, and there is no such thing as a “typical” FOSS
project, this paper is intended to be a first investigation into
these questions within the context of one leading FOSS project:
Mozilla.

The rest of the paper is organized as follows: We start with a
review of research on bug triaging. Next we describe our
methodology, and the Mozilla systems we studied. Section 4
describes the results of our study, including excerpts from
interviews with developers and users of these systems. Section 5
discusses our findings and the pros and cons of using these
systems, as well as lessons to enhancing these tools. Section 6
concludes with a summary of the key findings and future work.

2. RELATED WORK
Automatic crash reporting systems have been used in many
closed-source systems and companies [5]. The most famous is
the Windows Error Reporting (WER) system by Microsoft,
described by Kinshumann et al. in [21]. The author found that “a
bug reported by WER is about 5 times more likely to be fixed
than a bug reported directly by a human”. Kim et al. [20] studied
the WER system and provided “Crash Graphs” which present a
high-level aggregated view of multiple crashes belonging in the
same bucket.

There have been a few studies of Mozilla’s automatic crash
reporting system. Kim et al [18] focused on prioritizing
debugging efforts by predicting top crashes. Dhaliwal et al. [13]
proposed a grouping approach to crash report triaging. They
show that effective grouping can reduce the time to fix bugs by
5%. Khomh et al. [17] proposed the use of crash entropy values
to prioritize crash types during triaging. These studies focused
on a small subset of crash reports.

There has been a lot of work on automating and improving the
bug triaging process [1, 2, 4, 14, 19, 23, 26]. Bug triaging refers
to the steps taken to manage a bug from the time it is reported to
the time the bug is resolved. Anvik [2] discussed a semi-
automated approach for assigning bugs to developers through a
recommender system. Anvik et al. [4] proposed another text-
based categorization that achieved between 57% and 64%
accuracy for assignment of bug reports in the Eclipse and
Firefox projects. Matter et al. [24] proposed a vocabulary-based
approach where developer expertise and bug vocabularies were
matched. Tamrawi et al. [26] designed a tool called “Bugzie”
which offered a fuzzy set-based approach to automated bug
assignment, and achieved 68% accuracy in predicting the 5 most
suited developers. Researchers have also come up with different
ways of visualizing bug related information [11]. Jeong et al.
[16] created a tool that visualized “bug tossing,” showing how
bug ownership got passed from developer to developer within a

project in order to identify ‘tricky’ bugs and effective
contributors.

Another topic examined by researchers has been duplicate bug
reports. Ko and Chilana [23] studied bug reports in the Mozilla
project and found that though there was a large number of
duplicate reports, these were often seen as helpful by
developers. Duplicates could reflect the severity and priority of a
bug. Bettenburg et al. [6] studied the Eclipse project and found
that most developers did not consider duplicate bug reports to be
a serious problem.

Other studies have found problems with duplicate reports.
Cavalcanti et al. [9, 10] studied 8 FOSS projects and found that
duplicate reports negatively impacted the overall development
process. They also identified factors that affect the frequency of
bug duplication. Davidson et al. [12] studied this problem in 12
FOSS projects of different size and focus. They found that
medium-sized projects are most affected – they have to deal
with the same number of duplicates as the large projects, but
without their resources. However, they did not find a
relationship between duplicates and whether the user base was
more or less technical. Anvik et al. [3] studied duplicates in
Firefox and Eclipse and found that these were common and that
there is a need for tools to detect these. Researchers have also
used machine learning and natural language processing
approaches to identify duplicate bugs [15, 27].

The quality of bug reports in FOSS projects is another important
topic. Bettenburg et al. [7] surveyed developers and users of the
Apache, Mozilla and Eclipse projects and compiled a list of
information that developers look for in a bug report. Based on
this inventory, they developed a bug reporting system called
CUEZILLA. This system provides a quality metric for bug
reports and points to information that would enhance the quality
of the report. Breu et al. [8] analyzed 600 bug reports from the
Mozilla and Eclipse projects and the information requests
developers made of reporters, and found that there was a need
for tools to structure and guide the reporting and information
exchange process. Ko et al. [22] examined the language of
nearly 200,000 bug report titles to understand how people
describe bugs. They also identified a need for tools that help
reporters submit more structured reports, which could be
automatically parsed.

3. METHODOLOGY
Our goal was to analyze the impact of crash reporting tools on
bug triaging in FOSS projects. More specifically, we wanted to
determine whether such systems lead to a net gain or loss in
information, as they could discourage users from submitting
more meaningful bug reports.

For our research, we examined Mozilla’s crash reporting system
because a) Mozilla products have a large user base and an active
developer community, b) the data needed for this study is
publicly available, c) this is an extensively studied project,
which allowed us to set our findings in context, and d) they have
used a crash reporting system for an extended period of time,
allowing procedures to develop and be adopted within the
project.

3.1 The Breakpad/Socorro Crash Reporting
System
Mozilla started using their current custom crash reporting
system in 2008, coinciding with the release of Firefox 3.
Currently, only their Firefox, SeaMonkey and Thunderbird
projects use this system. It has two components – Breakpad and
Socorro. Breakpad is an open source project started by Google.
It runs as a thread in every instance of the Mozilla process. It is
invoked when a crash occurs in any Mozillla’s processes,
collects the call stack and memory dumps from the process,
finds the thread that crashed and sends the information to
Socorro. The system prompts the users for additional
information, which they can provide if they wish. Socorro is a
python-based server system that aggregates and performs
statistical analysis on the crash reports submitted to Mozilla. The
Mozilla QA team processes these and either adds new bugs or
amends existing ones.

3.2 Analysis
We collected historical data for the project in the form of daily
crash logs, spanning from March 2010 to October 2011. We
were particularly interested in this time-period as we wanted to
see if and how bug reporting changed over that period of time.
We gathered bug information and bug revision histories from
the start of the Mozilla project to October 2011 from their bug
tracking system. Some of the reports were unavailable for
analysis due to permission issues, internal database errors or
malformed content. However, these only accounted for 5% of all
bugs in the database.

To further evaluate the usefulness of Mozilla’s crash reporting
system, we supplement the quantitative data with interviews of
developers who worked directly with the system. A total of 5
developers participated in our study - 2 Socorro/Breakpad
developers and 3 members of the Mozilla’s QA team
responsible for processing the reports. By examining
perspectives of developers and users we can better judge the
impact of this system and identify design changes that would
improve such systems.

4. RESULTS
A previous study of 12 FOSS projects [12] found that Mozilla
had a very active bug repository (around 3,361 new bugs
reported per month) compared to other projects. They also found
that the more active the bug repository, the more duplicates
there were. They found that Mozilla was especially affected,
with 24.7% of bugs submitted being marked as duplicates,
significantly more than other projects studied. We were
interested in finding the reason for this high duplicate rate, and
whether the automatic crash reporting system lessened or
amplified the problem.

4.1 Quantitative Results
First, we quantitatively analyzed the crash report logs from
March 2010 to October 2011. We aggregated basic statistics,
listed in Table 1, and compared to the activity in the bug
reporting system over the same period.

Mozilla on average receives 96 million crash reports per month;
they outnumber bug reports by more than 20,000: 1. While these
are very large numbers, one should keep in mind that there were
an estimated 350 million Firefox users by early 2010 [28], and
between 15 and 20 million Thunderbird users [29]. Of these 96

million crash reports Mozilla only processes a sample of 10%,
biased towards reports with user-provided details. 88.19% of
this sample is classified as duplicates using fuzzy matching
techniques. This still leaves 1,135,308 reports to process per
month. While this is a dramatic reduction, it is still a huge set to
work through.

Table 1. Mozilla Crash Reports (March 2010 - October
2011) And Bug Reports (July 1998 - October 2011)
* Crash signatures added to database June 9, 2011

 Breakpad /
Socorro

Bug
Reports

Avg. # of reports per month 96,131,054.5 4,048.4
% Duplicate 88.19% 22.68%
Avg. # of crash reports turned to
bug reports per month

89.2*

Avg. # of bug reports associated
with crash report data per month

 94.5

Days for crash reports to be
associated with bug report (Avg)

230.87*

Remaining reports are manually classified by the QA group as
either duplicates, not critical, or not actionable. Of the remaining
reports, 89.2 per month will be turned into one or more bug
reports (data is limited to the period after June 9, 2011 when the
project started tracking crash signatures in bug reports). As the
name suggests, crash signatures are unique identifiers of system
crashes that captures potentially important technical information
for both debugging and simple categorization and identification
of duplicate reports. As we explain below, that monthly average
is heavily skewed. Of all crash reports, the number that leads to
bug reports account for only 0.00009%, or 0.008% of unique
crash reports sampled. However, if we turn this around, 2.334%
of bug reports are either created or augmented with crash report
data. Therefore, though there is a lot of waste, crash reports add
significant value to Mozilla’s QA.

The introduction of a crash reporting system, and the volumes of
data these can generate do come at a price. Developing effective
strategies and tools to triage the data are essential to leverage
these systems.

Figure 1. Time taken to associate crash reports with bug

reports

Figure 1 shows a plot of the report date of a crash against the
date when these were associated with a bug (a new bug was
created, or an existing bug was amended). Again, the data is

limited to the period after June 9 2011, when the project started
tracking these associations. In the 4.5 months for which we have
data, the QA team matched 402 crash reports, or 89.2 per month.
More importantly, though the majority of matched reports are
recent (median 197.5 days), we see that a significant number
have been in the queue for close to two years. Given that
Mozilla has had six major releases in that time-frame, it shows
that crash reports can help identify deep and fundamental bugs
that can haunt software projects for years. There is therefore a
strong need to develop tools to not just help view reports more
easily, but also help the QA team analyze the data more easily.

Bugs and crashes are of course cyclical and affected by the
development-activity taking place at the time. When new
versions of the software are released, we expect to see spikes
(see Figure 2) [18]. The match is not perfect however; adoption
is not immediate, and there may be differences in quality control
between releases. Also, because Mozilla’s products are
platforms for other software (plugins and extensions), problems
can spike as those are refreshed. From our conversations with
developers, such spikes are not uncommon.

Figure 2. Crash signatures vs. software releases in Mozilla

In Figure 3 we can see long-term trends for bug reporting and
duplication rates. The automatic crash reporting system was
introduced in June 2008 (first stripped vertical line), and they
switched to a rapid release cycle in April 2011 (2nd stripped
vertical line). It is important to note that though there is a strong
downward trend in duplicate rates, this may be artificially
inflated because identifying some duplicates can take a long
time. The duplicate numbers should therefore be interpreted
with caution.

That said; we see a strong positive development in terms of
reducing the number of duplicate bug reports within the project.
As we can see from Table 2, this development has been
statistically significant across the three project “periods”. In
terms of data quality, we can therefore say that it does not
appear that the introduction of the crash reporting system has
interrupted a positive trend that was already in effect, the
reduction of duplicate bug reports in Mozilla. While this is
perhaps not surprising given the small number of crash reports
that are turned into bug reports, it is a positive nonetheless.

Table 2. The Mozilla Project (October 2006 to October 2011 and
Introduction of Key Changes (Crash reporting system June 2008 &
Rapid release Cycle April 2011)

 Pre vs Post‐Crash
System

Pre‐Crash vs
Rapid Release

Post‐Crash vs
Rapid Release

of Bugs
ANOVA

(df=1, F=33.199,
p<0.00001)

ANOVA(df=1,
F=47.965,
p<0.00001)

ANOVA(df=1,
F=1.4081,
p=0.2427)

%
Duplicates

ANOVA (df=1,
F=96.333,
p<0.00001)

ANOVA (df=1,
F=126.89,
p<0.00001)

ANOVA (df=1,
F=15.187,
p=0.00038)

As we see in Figure 3. another positive development is that
though there was a slight dip in the number of bug reports
immediately after the introduction of the crash reporting system,
activity has since picked back up. We see an increasing trend in
the number of bugs reported per month after the introduction of
the automatic reporting system (ANOVA: df=1, F=33.199,
p<0.00001). We can therefore conclude that though introducing
the crash reporting system may have been disruptive, these
issues were quickly worked out.

Figure 4. Number of unique bug reporters and new bug

reporters

As we see in Figure 4, the community of bug reporters has been
continuously growing, and the community renews itself with
new members, though the renewal rate seems to be in decline
(ANOVA: df=1, F=41.01, p<0.00001). It is also worth nothing
from this chart that though the rate of new reporters is relatively
high, the growth of the regular commenter community is
relatively slow. Most new contributors leave after posting a
single bug report, as others have shown [12].

Though there is a declining trend in terms of first-time bug
submitters, it is not unexpected. As the community grows we
expect it to approach a saturation point in terms of the number of
people with both the ability and interest in contributing. We also
expect that as the community grows, communication and
coordination problems grow as well, potentially discouraging
further growth. The data therefore seems to show no long-term
negative effects of the introduction of the crash reporting system
in terms of participation or data quality (here measured as
duplicate reporting rates).

0

5

10

15

20

25

0

2

4

6

8

10

12

14

o
f
R
e
al
e
as
e
s

o
f
C
ra
sh
 S
ig
n
at
u
re
s
(M

ill
io
n
s)

of Major Releases # of Releases # of Crash Signatures

0%

10%

20%

30%

40%

50%

60%

70%

0

500

1000

1500

2000

2500

3000

3500

May‐07 Dec‐07 Jul‐08 Feb‐09 Sep‐09 Apr‐10 Nov‐10 Jun‐11

%
 o
f
N
e
w
 R
ep

o
rt
er
s

o
f
U
n
iq
u
e
R
ep

o
rt
er
s

of Unique Reporters
% of New Reporters
Linear (# of Unique Reporters)
Linear (% of New Reporters)

0%

5%

10%

15%

20%

25%

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

O
ct
‐0
6

D
ec
‐0
6

Fe
b
‐0
7

A
p
r‐
0
7

Ju
n
‐0
7

A
u
g‐
0
7

O
ct
‐0
7

D
ec
‐0
7

Fe
b
‐0
8

A
p
r‐
0
8

Ju
n
‐0
8

A
u
g‐
0
8

O
ct
‐0
8

D
ec
‐0
8

Fe
b
‐0
9

A
p
r‐
0
9

Ju
n
‐0
9

A
u
g‐
0
9

O
ct
‐0
9

D
ec
‐0
9

Fe
b
‐1
0

A
p
r‐
1
0

Ju
n
‐1
0

A
u
g‐
1
0

O
ct
‐1
0

D
ec
‐1
0

Fe
b
‐1
1

A
p
r‐
1
1

Ju
n
‐1
1

A
u
g‐
1
1

O
ct
‐1
1

%
 o
f
D
u
p
lic
at
e
 B
u
gs

o
f
B
u
gs

of Bugs % of Duplicates Poly. (# of Bugs) Poly. (% of Duplicates)

Figure 3. Temporal view of bug activity in Mozilla. First stripped vertical bar indicates the introduction of the crash reporting
system, and the second indicates transition to rapid release cycle

4.2 Qualitative Results
To supplement our statistical findings, we interviewed five
developers working for Mozilla. Two participants were involved
in developing the Breakpad and Socorro systems, and the other
three worked for the QA team that processes the crash reports
submitted to Socorro. All our participants were employed full-
time at Mozilla and three had some formal background in
computer science.

Figure 5, Interview Results. Values in “red” are the means
and values in “blue” (inside the parenthesis) are the
standard deviations for each response

Participants were asked to give their opinions and share their
experiences with the current system and with working with
crash reports to debug Mozilla projects. This included but was
not limited to what challenges they face in using or developing
the crash reporting systems, pros and cons of using crash reports
to drive debugging, and features that they would like to see in
the system in the future. Some questions were posed as open-
ended questions, and others as likert-scale alternatives. The
results of these are presented in Figure 5.

There was strong agreement that the system – in its current
incarnation and based on subjective experience – helps
developers fix bugs, and helps them associate crash reports to
bugs quickly and easily. Our participants did find the crash
reporting system to be very helpful, as they felt it was effective
in helping developers find bugs and fix them:

“I would say it’s doing the job it is intended to as far as I can
tell from a developer’s perspective.”

More importantly, participants felt that the system added unique
capabilities without which certain types of bugs would have
been difficult to detect:

“I always have a hard time as a QA person to strongly agree
with a statement as my job is to find exceptions. If it wasn't for
Breakpad, we would not be aware of some of the crashes that
end up happening in the product. It would be definitely
harder.”

Participants were more ambivalent about the usefulness of the
user interface, and the relevance of the information shown to
developers. This leads us to conclude that though the system is
useful, there are still significant improvements to be made.
Participants felt that Breakpad could do a better job collecting

useful information in some situations, especially for newer
platforms like Android devices.

“For android devices, it might not necessarily give the relevant
information. [...] It is getting better for Android. Some of the
other things are minor tweaks on the reporting end to make the
information a bit more useful.”

Though the participants had positive feedback about the
automatic crash reporting system, they were not blind to the
costs and risks of this system. When asked about the challenges
to deploying and using the crash reporting system, a participant
replied:

“It has a cost obviously. It’s a lot of data to collect and report
on. That can be a challenge to manage all that. We only report
on a statistically valid subset of crashes. We only report on
10%. We collect 100% crashes so that’s a lot of data coming in
and it’s really expensive and it’s a challenge to make sure that
the system is up and running.”

“I think it’s pretty decent system overall. I wish it were easier to
install and better and up-to-date documentation and installation
utilities to help people. If the user has a new program and if they
wish to support automatic crash reporting they have to dig deep
into different websites and go through a lot of documentation to
get it up and running.”

5. DISCUSSION
We started this research with three research questions:

RQ1. What impact do automatic crash reporting systems have
on FOSS projects?

RQ2. What overhead do automatic crash reporting tools add to
the bug triaging process?

RQ3. Do crash reporting systems discourage participation in the
bug reporting process?

While we can’t say anything about FOSS projects in general, we
did get some compelling data for the Mozilla project, often held
up as an exemplar in the FOSS community, and certainly one of
the largest and most influential FOSS projects.

Starting from the bottom up (RQ3), we found no evidence that
crash reporting systems discouraged participation in bug
reporting, at least in the long term. Looking at Figure 4 we see
that though new reporters as a portion of all bug reporters has
been declining, this trend started before the introduction of the
crash reporting system, and does not seem to have picked up
speed since. Furthermore, the total number of bug reporters has
continued to increase over time. Figure 3 shows that there was a
slight decrease in the total number of bug reports shortly after
the introduction of the system, but over the long term this
number has also increased. Therefore we find no compelling
evidence for crash reporting systems discouraging participation
in bug reporting.

We did find a lot of evidence of the costs associated with
adopting a crash reporting system (RQ2). The huge volume of
data collected, and the relatively low number of bugs identified
from the data is astounding. The costs, both monetary, as well as
in time and effort needed to collect and sort through such vast
amounts of data are significant, and thus adopting a crash
reporting system is something that requires a significant
commitment.

In all likelihood, for a moderate-sized FOSS project,
implementing such a system will require a dedicated servers to
receive reports, bandwidth charges, and because of the
specialized skills required and the less appealing nature of the
sleuthing work required, full time staff to try and process the
data received. Our participants indicate that there is also a cost
to incorporating these systems into their products due to either
lacking documentation or tradeoffs in terms of implementation.

Much more work needs to be done to streamline the triaging and
processing of data, or of extracting value from the data that these
systems generate. The application of machine learning
techniques to better match duplicates, better sampling
techniques to ensure data is gathered about the most
interesting/relevant crashes, and better diagnosis tools to help
root out the underlying causes for crashes and turning these into
bug reports.

Finally, turning to RQ1, all the developers we talked to
unanimously think that the system provides real and significant
value to the QA of Mozilla. Though only a tiny fraction of crash
reports are actually used by the team, one of every 40 bug
reports use data from the crash reports. These are bugs that
would in all likelihood have been very difficult to track down
without the information in the crash reports. In this sense, we
can see that this system has a real and meaningful impact.

Because the implementation of these systems present both
opportunities and challenges, it is important to identify best
practices and optimize these systems. FOSS projects like the
Kernel, Red Hat/Fedora, Ubuntu, etc. have deployed similar
systems, and our next step will be to do an inventory of these.

That said, it is important to realize that deploying a crash
reporting system is likely not an option for everyone. Many
FOSS projects are not large enough to need such a complex
system, or would be overwhelmed by the flood of data. In such
cases these systems will likely prove counterproductive.

6. THREATS TO VALIDITY
The data we gathered is just a snapshot in time for a single
project. Considering the activity level and dynamism of the
Mozilla project, a lot of things may have changed from the time
we gathered our data and the time this paper goes to print. Small
improvements in the triaging process, or how crash reports are
filtered can also have a big impact here, given the low
“exploitation rate” of crash reports.

Given that we’ve only examined one project and the procedures
they follow, we don’t know whether these will generalize to
other FOSS projects. Mozilla is an outlier in the FOSS
community, both because of its size as well as its top-down
structure and reliance on professional employees. That said,
Mozilla is often used as an exemplar, or a role model for other
FOSS projects, and this knowledge will fit into the greater body
of knowledge of how FOSS projects can and should be
managed.

Without wanting to second-guess our participants, who after all
have extensive experience using this system, it is possible that
the ratings and stated opinions of our participants were biased by
one of two factors: a) having a stake in the system (being paid to
develop or use the system), and b) lacking exposure to other
systems of this type. As one participant put it: “I am not sure
what alternatives we have. I think the advantages of having a
crash reporting system at all is really great.”

As we look for feedback and ideas for how to improve these
systems, it is important to be aware of these limitations; our
informants and users often compare these systems to no system,
and thus excuse or ignore shortcomings. Having a more realistic
control condition would likely make failings or limitations of the
current system more apparent.

7. CONCLUSION
We found that the Mozilla crash reporting system has had
significant impact on the QA of their products, with 1 in 40 bug
reports now being tied to or derived from crash reports. These
systems come at a steep price however, as vast amounts of data
tend to be generated, which is difficult to handle. The return on
investment for these systems therefore has to be carefully
considered for each project. We found no evidence to support
the claim that these systems discourage participation, at least in
the long term, and there is ample need and opportunity to
improve these systems.

8. ACKNOWLEDGMENTS
We would like to thank the Oregon State University HCI group
for their input and feedback on the research.

9. REFERENCES
[1] Ahsan, S.N., Ferzund, J. and Wotawa, F. “Automatic

Software Bug Triage System (BTS) Based on Latent
Semantic Indexing and Support Vector Machine.” In
Fourth International Conference on Software Engineering
Advances, 2009., pp. 216–221.

[2] Anvik, J. “Automating bug report assignment.” In
Proceedings of the 28th international conference on
Software engineering, Shanghai, China, 2006, pp. 937–940.

[3] Anvik, J., Hiew, L. and Murphy, G.C. “Coping with an
open bug repository” In Proceedings OOPSLA workshop
on Eclipse technology eXchange, San Diego, California,
2005, pp. 35–39.

[4] Anvik, J., Hiew, L. and Murphy, G.C. “Who should fix this
bug?” In Proceedings of the 28th international conference
on Software engineering, Shanghai, China, 2006, pp. 361–
370.

[5] Apple, “Technical Note TN2123: CrashReporter,” 2010.

[6] Bettenburg, N., Premraj, R., Zimmermann, T. and Kim, S.
“Duplicate bug reports considered harmful … really?” In
IEEE International Conference on Software Maintenance,
2008. ICSM 2008, pp. 337–345.

[7] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj,
R. and Zimmermann, T. “What makes a good bug report?”
In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
Atlanta, Georgia, 2008, pp. 308–318.

[8] Breu, S., Premraj, R., Sillito, J. and Zimmermann, T.
“Information needs in bug reports: improving cooperation
between developers and users.” In Proceedings of the 2010
ACM conference on Computer supported cooperative work,
Savannah, Georgia, USA, 2010, pp. 301–310.

[9] Cavalcanti, Y.C., Anselmo, P.M.S.N., Almeida, E.S.,
Cunha, C.E.A., Lucrédio, D. and Meira, S. R.L. “One Step
More to Understand the Bug Report Duplication Problem.”

In Proceedings of the 2010 Brazilian Symposium on
Software Engineering), pp. 148–157.

[10] Cavalcanti, Y.C., Almeida, E.S., Cunha, C.E.A., Lucrédio,
D., and Meira, S.R.L. “An Initial Study on the Bug Report
Duplication Problem,” in 2010 14th European Conference
on Software Maintenance and Reengineering (CSMR),
2010, pp. 264–267.

[11] D’Ambros, M., Lanza, M. and Pinzger, M. “A Bug’s Life
Visualizing a Bug Database.” In 4th IEEE International
Workshop on Visualizing Software for Understanding and
Analysis, 2007, pp. 113–120.

[12] Davidson, J.L., Mohan, N. and Jensen, C. “Coping with
duplicate bug reports in free/open source software
projects.” In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, 2011, pp. 101–
108.

[13] Dhaliwal, T., Khomh, F., Zou, Y. "Classifying field crash
reports for fixing bugs: A case study of Mozilla Firefox." In
Proceedings of Software Maintenance (ICSM), 2011
pp.333-342,

[14] Hooimeijer, P. and Weimer, W. “Modeling bug report
quality.” In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, Atlanta, Georgia, USA, 2007, pp. 34–43.

[15] Jalbert, N. and Weimer, W. “Automated duplicate detection
for bug tracking systems.” In International Conference on
Dependable Systems and Networks With FTCS and DCC,
2008, pp. 52–61.

[16] Jeong, G., Kim, S. and Zimmermann, T. “Improving bug
triage with bug tossing graphs.” In Proceedings of the 7th
joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
foundations of software engineering, Amsterdam, The
Netherlands, 2009, pp. 111–120.

[17] Khomh, F., Chan, B., Zou, y., Hassan, A.E., "An Entropy
Evaluation Approach for Triaging Field Crashes: A Case
Study of Mozilla Firefox." In (WCRE), 18th Working
Conference on Reverse Engineering, 2011,, pp.261-270.

[18] Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S.C., Park,
S. "Which Crashes Should I Fix First? Predicting Top
Crashes at an Early Stage to Prioritize Debugging Efforts."
In Software Engineering, IEEE Transactions on , vol.37,
no.3, 2011, pp.430-447,

[19] Kim, S., Zimmermann, T., Pan, K. and Whitehead, E.J.
“Automatic Identification of Bug-Introducing Changes.” In
21st IEEE/ACM International Conference on Automated
Software Engineering, 2006,, pp. 81–90.

[20] Kim, S., Zimmermann, T., Nagappan, N. "Crash graphs:
An aggregated view of multiple crashes to improve crash
triage." In Proceedings of 41st International Conference on
Dependable Systems & Networks (DSN), 2011,, pp.486-
493.

[21] Kinshumann, K., Glerum, K., Greenberg, S. Aul, G.,
Orgovan, V., Nichols, G., Grant, D., Loihle, G. and Hunt,
G. “Debugging in the (very) large: ten years of
implementation and experience.” In. ACM Commun, vol.
54, no. 7,2011, pp. 111–116, .

[22] Ko, A.J., Myers, B.A. and Chau, D.H. “A Linguistic
Analysis of How People Describe Software Problems.” In
IEEE Symposium on Visual Languages and Human-Centric
Computing, 2006., pp. 127–134.

[23] Ko, A.J. and Chilana, P.K. “How power users help and
hinder open bug reporting.” In Proceedings of the 28th
international conference on Human factors in computing
systems, Atlanta, Georgia, USA, 2010, pp. 1665–1674.

[24] Matter, D., Kuhn, A. and Nierstrasz, O. “Assigning bug
reports using a vocabulary-based expertise model of
developers.” In 6th IEEE International Working
Conference on Mining Software Repositories, 2009., pp.
131–140.

[25] Raymond, Eric S. "The Cathedral and the Bazaar."
Computers & Mathematics with Applications 39.3-4
(2000).

[26] Tamrawi, A., Nguyen, T.T., Al-Kofahi, J. and Nguyen,
T.N. “Fuzzy set-based automatic bug triaging: NIER
track.” In Proceeding of the 33rd international conference
on Software engineering, Waikiki, Honolulu, HI, USA,
2011, pp. 884–887.

[27] Wang, X., Zhang, L., Xie, T., Anvik, J. and Sun, J. “An
approach to detecting duplicate bug reports using natural
language and execution information.” In Proceedings of the
30th international conference on Software engineering,
Leipzig, Germany, 2008, pp. 461–470.

[28] https://wiki.mozilla.org/images/e/ed/Analyst_report_
Q1_2010.pdf

[29] http://blog.mozilla.com/thunderbird/2011/11

