
From Mashup Applications

to Open Data Ecosystems

Timo Aaltonen, Tommi Mikkonen, Heikki Peltola, and Arto Salminen

Department of Pervasive Computing
Tampere University of Technology

Tampere, Finland

firstname.lastname@tut.fi

ABSTRACT

Web-based software is available all over the world instantly after

the online release. Applications can be used and updated without

need to install anything, with natural support for collaboration,

which allows users to interact and share the same applications

over the Web. In addition, numerous web services allowing users

to upload, download, store and modify private and public

resources have emerged. However, as the amount of web services

and devices used to consume as well as generate data has

exploded, it is difficult to access and manage relevant data. In this

paper, we start from the principles of mashups, reflect their use to

the concepts of software ecosystems, and finally extend the

discussion to open data generated by users themselves. As a

technical contribution, we also introduce our proof-of-concept

implementation of a mashup system built on wellness data, and

discuss the main lessons we have learned in the process.

Categories and Subject Descriptors

D.2.11 [Software Engineering] Software Architectures – Data

abstraction. C.0 [Computer Systems Organization]: General –

system architectures.

General Terms

Design. Experimentation.

Keywords

Web apps; cloud service; ecosystem; open data.

1. INTRODUCTION
Despite its origins in sharing static documents, the Web has

become a software platform. Today, majority of new applications

intended for desktop computers are released as web-based

software. This development has its disadvantages, but numerous

benefits, as well. The web-based software is available all over the

world instantly after the online release. It can be used and updated

without need to install anything. Applications can effortlessly

support user collaboration, i.e., allow users to interact and share

the same applications over the Web. In addition, numerous web

services allowing users to upload, download, store and modify

private and public resources have emerged. These resources can

include personal images, texts, videos, e-mails, etc. as well as

public data such as stock quotes, weather data and news feeds.

As the amount of web services and devices used to consume data

has exploded, it has become difficult to handle and gain access to

the relevant information. To be able to manage the situation,

searching has become one of the most important service of the

Web. However, searching can be used only for data accessing, not

for analyzing or parsing it, which are also commonly needed

facilities.

Similarly to resources, communication has decentralized into

different services such as e-mail, social media services, instant

messaging services, chats, blogs, and so on. This use of silos for

particular types of resources, messages, and so on is creating

artificial boundaries between different data and services.

Liberating users to access data in a fashion that is open yet

private, new mechanisms are needed for managing services of the

Web.

An important realization is that applications built on top of the

Web do not have to live by the same constraints that have

characterized the evolution of conventional desktop software. The

ability to dynamically combine content from numerous web sites

and local resources, and the ability to instantly publish services

worldwide has opened up entirely new possibilities for software

development. In general, such systems are referred to as mashups,

which are content aggregates that leverage the power of the Web

to support instant, worldwide sharing of content.

Since leveraging already existing data is essential for building

mashups, sources of open and personal data are important when

developing those. While there are numerous ways to collect data

online – we will address this issue later on in this paper – the most

obvious input for mashup development is data that is freely

available (so-called open data) as well as data that is owned by the

user (personal data). The former is increasingly made available for

instance from public sources, whereas the latter can be easily

generated with different types of gadgets that are owned by

individual people. Moreover, it is also an option to share data

between individuals, resulting in crowdsourcing of data.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

OpenSym '14, August 27 - 29 2014, Berlin, Germany

Copyright 2014 ACM 978-1-4503-3016-9/14/08…$15.00.

http://dx.doi.org/10.1145/2641580.2641599

In this paper, we provide an insight to our work regarding the

creation of an ecosystem where wellbeing data is collected and

used as basis for mashups by combining it with facilities that are

readily available on the web. As a concrete technical contribution,

we introduce our proof-of-concept realization of Wellness

Warehouse Engine (W2E), a NoSQL database system that is

capable of hosting wellness data from various gadgets in a fashion

where privacy issues are taken into account. Towards the end of

the paper, we also discuss our future plans regarding the system as

well as provide an insight to lessons learned during the process.

The rest of this paper is structured as follows. In Section 2, we

provide an overview to mashup applications and their

development process at a general level. In Section 3, we discuss

ecosystems that commonly lie behind the mashups, and address

their main characteristics and challenges. In Section 4, we link

mashup development with open data as well as with data that can

be produced by users themselves, provided that suitable gadgets

are available. In Section 5, we introduce our proof-of-concept

implementation where wellness related personal data can be

linked with other data available online, and in Section 6, we

address lessons learned during the design and implementation

process. Finally, in Section 7 we draw some final conclusions.

2. OVERVIEW OF MASHUPS
Mashups can be characterized as applications that combine

resources - data, code and other content - from different services

in the Web into an integrated experience. They can combine the

content in new, unforeseen ways, thus creating entirely new web

services, or they can provide new visualizations for already

existing services. For instance, a mashup can combine a map with

images that can be attached to specific locations. In contrast,

another mashup can visualize the images in novel fashion, for

example on a timeline or as a collage.

Well-build mashups have functionality for filtering source data.

By having adjustable filters a mashup can provide more relevant

results. Filters can be based on much more relevant variables than

manually entered limits such as the highest and the lowest price of

a product. Such filters can be time of the day, location of the user,

past activity of the user, activity of other users (trends), profile

setting of user’s mobile device, etc. Heavy processing, e.g.

filtering images with face detection algorithm, can be executed on

the server, using MashReduce programming model [1], for

instance.

There are four special characteristics that make mashup systems

different from more traditional applications [23]:

1. In mashup development there is a lot more focus on

reusing the content rather than the implementation of a

web site. While standardized formats for various content

formats (such as images and videos) exist, it is often

surprisingly difficult to reuse the implementation of a web

site in other contexts, e.g., because the current web

technologies do not make it easy to specify which parts of

the web site are intended to be reusable in other contexts

and which are not. In the same fashion, many mashups

reuse the visual representation of sites only (e.g., a map or

the layout of a web site), while others reuse the content

(substance) separately from its visual representation. No

well-defined rules or interfaces exist (apart from HTML,

CSS and the DOM) for keeping the content separate from

its visual representation. We will discuss these topics in

more detail in the next section.

2. Mashups are far more dynamic than conventional (binary)

software components. Since mashups are all about

combining content from multiple web sites in a highly

dynamic fashion, they cannot be built easily with static

programming languages that require advance compilation

and static type checking[1]. This has created a trend

towards more and more dynamic programming languages

such as JavaScript, Python or Perl. Even though these

languages were originally intended for relatively simple

scripting tasks, many of them (especially JavaScript) are

increasingly used as “real” programming languages. We

have summarized our experiences in using JavaScript as a

real programming language in another paper [1].

3. Due to the increased focus on content rather than on

implementation, mashup developer base is different from

conventional software development projects. A mashup

developer does not necessarily have any formal training or

background in software development. Rather, it is far

more common for them to have some kind of a media

background. Moreover, special tools or a particular

development process are not a prerequisite for developing

mashups, but a simple text editor and some example web

pages are often enough for the composition of a simple

system. Consequently, mashup developers are not always

aware of the benefits of well-established software

engineering principles such as separation of concerns,

modularity or information hiding.

4. The distribution and sharing power of the Web makes it

exceptionally easy to reuse content in unforeseen,

unexpected ways. Basically, anything that is made

available on the Web is instantly accessible to anybody

anywhere in the world with a web browser. This increases

the potential content user and re-user base by several

orders of magnitude compared to conventional software

components that are typically distributed in a far more

controlled and limited fashion. Often, the developer of a

web site may not be aware at all that content from his or

her site is being used in other contexts as well. The same

also applies to implementations, but due to the above

complications their reuse is hardened in practice.

Jointly, these characteristics enable the design of compelling

applications where user-generated data, produced in the

crowdsourcing fashion, data readily available from online

services, and personal content can all be used. In such systems,

contracts, intellectual property rights, data and format

dependencies, and other forms of relations bind the different

stakeholders together to create mutual benefits. In general, these

are referred to as mashup ecosystems.

3. MASHUP ECOSYSTEMS
Since mashups by definition combine data from multiple sources,

the stakeholders that provide this data form an ecosystem, i.e. a

set of entities that act as a single unit instead of each participating

business acting separately.

Such ecosystem – formed by service providers, mashup authors,

and users as visualized in Figure 1 – need not be controlled by a

central authority. In contrast, even though mashup authors and

service providers may have explicit service level agreements

(SLA), it is common that mashups are developed without such

contracts, and the ecosystem is formed implicitly. For instance,

one can build a mashup on top of services freely available in the

web with liberal enough licenses. In a broad sense, any web

document author can be considered as a service provider, as it is

common that content is gathered from web sites by technique

called “screen scraping” or “web scraping”, where source data is

parsed from HTML pages aimed at human readers.

In the following we will first provide some background

information regarding mashup ecosystems, and then advance to

some challenges associated with the establishment of new mashup

ecosystems.

Figure 1. Mashup ecosystem key actors are mashup users,

mashup authors, and service providers.

3.1 Background
Yu and Woodard [2] have described mashup ecosystems by using

the ProgrammableWeb mashup indexing service

(http://www.programmableweb.com/) data as source. They

investigate the structure and dynamics of the Web 2.0 ecosystems

by analyzing the data available about mashups and APIs. The first

finding was that at the time of the study APIs were organized into

three tiers, which were 1) the most popular API (Google Maps),

2) popular APIs (many APIs used for social services and

searching) and 3) less popular APIs (APIs often used for

blogging, online retail, music, videos and feeds). The second

finding was that mashups are often composed by combining APIs

across tiers. This highlights the central role of the most popular

APIs, but also reveals the importance of less popular APIs in

dilution of the ecosystem. Many of the third tier APIs bring

together novel combinations of functionality.

Another interesting finding is that in contrast to what has been

suggested [3], there is no long tail of services that would form a

basis for a significant number of mashups. Instead, Yu and

Woodart noticed that 95 % of mashups are build on 20 % of

services, which is much more than in the famous Pareto Principle,

or 80/20 rule as it is often called. Moreover, they noted that 51 %

of services were not used by mashups at all. However, one should

bear in mind that Yu's and Woodard's data source,

ProgrammableWeb, lists only those services and mashups that

have been added to it by developers. Therefore there are services

and mashups that are not included in the source data.

Bosch has reviewed mashup ecosystem from end-user

programming point of view [4]. Bosch also pointed out two

success factors as well as two challenges that this ecosystem has.

The two success factors are, first, the value that end-users gain by

designing their own applications, and second, sharing of

applications among users. The two challenges are enabling the

end-user programming for inexperienced developers and

minimizing ecosystem maintenance efforts. Furthermore, Bosch

identifies so called “undirected developers”' that are able to use

the platform in unforeseen ways and provide significant

innovations for the overall ecosystem. Similarly to [4], our

perception is that mashup ecosystems are very valuable for end-

users and service providers.

3.2 Designing Services
Service providers are crucial stakeholders in mashup ecosystems,

as they provide the necessary content that is reused in mashups.

There are numerous motives to allow liberal access to the content

of a service. One rationale is a desire for getting a wider audience

for certain platform, product, or content accessed through the

service. Moreover, opening a service can lead to numerous clients

created by third party developers to emerge on different platforms

and for different user requirements. Some services are designed so

that spreading advertising messages along with the content is

possible.

Service providers support mashup ecosystems in several clearly

identifiable levels. These are described in more detail in the

following.

3.2.1 No support for mashups
Some web content authors do not support mashups at all and

provide their content solely as regular web documents. This kind

of content is still accessible with ``screen scraping'', but such

accessing is typically error prone, and it often is illegitimate.

Some services even have implemented technical measures to

prevent scraping. Furthermore, even if reusing the content in

mashups would be allowed, the web content author does not have

control on what parts of the content is reused, and it is difficult to

build a business model around such approach towards mashups.

In addition, it is likely that accessing the content is very inefficient

and cumbersome from mashup author's point of view.

Furthermore, since even the smallest change in the web page can

lead to a different interpretation of the content, mashups relying

on such services are usually somewhat fragile.

3.2.2 Access through a web feed
It is common that regularly updated sites, such as blogs or news

sites, provide their content through RSS, Atom, or other type of

web feed. A web feed is easy to set up and maintain, particularly

if some publishing system is used. The feed is intended mainly for

users to subscribe with some feed reader application, but at the

same time the data becomes accessible for mashups, too. While it

is possible to establish some kind of licensing for reusing the

content, the control over the content is still rather coarse.

Use cases of web feeds are limited to accessing the content as a

whole, because, for instance, querying certain content item is not

possible. Utilizing web feeds in mashups is typically

straightforward as helpful libraries and tools for such task are

available on most platforms. Some dedicated mashup tools,

Yahoo! Pipes (http://pipes.yahoo.com/) for instance, support only

web feeds if content from an arbitrary service is desired to be

included into a mashup.

3.2.3 Access through a web interface
Providing a service with a web interface, typically following

either REST or SOAP architecture style, enables using the service

in mashups. Use cases of such interface allow not just data

accessing but other types of services as well. For instance, a

service can provide means for social communication,

authentication, database accessing, or specialized functions such

as reverse geocoding or music identifying.

Setting up a web service with REST or SOAP interface requires

careful planning and implementation, especially if sensitive

information is handled. However, such system allows fine-grained

control over the content as well as applications using the

interface, and it enables different kinds of business models.

Service load can be handled as well by limiting requests made in a

time period, even individually for each application.

Utilizing well-designed web interfaces in mashups is

straightforward, and maintaining efforts that are needed when the

service is updated are typically trivial. Conveniently, the content

can be provided in different formats for the mashup developers to

choose from, for instance both JSON and XML formats are often

supported.

3.2.4 Access through a programmatic interface
Establishing a programmatic JavaScript API allows to integrate

the sevice tightly with arbitrary web applications and mashup

ecosystems. Such interface is used by including a JavaScript

library into the application, which makes it possible to use the

service with regular JavaScript function calls. Typically the

JavaScript library is downloaded from the service provider's

server instead of having a copy on the server hosting the mashup,

which makes possible to always use the most recent version of the

library.

Setting up a programmatic JavaScript interface requires careful

engineering, but it enables superior control over the content and

applications. Diverse business models are possible, and the

content can be provided with different terms and licenses for

individual clients. Program code of the JavaScript library is often

protected against misuse by code obfuscation or by other technical

means. Considerable downside of the programmatic interfaces is

that updating the interface affects directly on the mashup

implementation. Therefore, programmatic interfaces are often

provided in numerous versions, and a new version is introduced

whenever features are added. Consequently, bug fixes need to be

performed on all the versions, which makes maintaining the

interface more laborious.

Another downside is that if a programmatic interface is desired to

be used on other runtime environments than a web browser, a

parallel version needs to be provided. For instance, Google Maps

API (https://developers.google.com/maps/) has separate native

SDKs for Android and iOS mobile operating systems, and it also

used to have another version for Adobe Flash Player

(http://www.adobe.com/products/flashplayer.html). The Flash

version was deprecated in September, 2011.

The proliferation of programmatic interfaces is a step towards

software created from downloadable components. This is

sometimes referred to as mashware, web software development

technique described in [8]. The most successful example of this

kind of interface is Google Maps JavaScript API, which is also the

most popular interface used in mashups [2]. It can be argued that

one reason behind the success of this API has been the

implementation style, which is particularly convenient for

application developers, as it is similar to DOM (Document Object

Model) and other interfaces that can be found from web browsers.

However, Google Maps is not the only example of programmatic

interface approach, as there are numerous other examples

including user authentication, social networking, HTML5 music

and video players, and data visualization, among others.

Until recently most of the services have been provided for free

with the exception of some very specialized ones such as image

content recognition and sentiment analysis services. However, in

October 2011 Google announced that Google Maps API will be

provided in two different versions: free and non-free, with the

latter called Google Maps API for Business. The one with a price

tag provides more advantageous features such as higher request

limitations and technical support. Even if this is the first

remarkable example of this kind of development, it is an

interesting change, particularly when bearing in mind that the

Google Maps is the most popular service used in mashups, and it

is widely utilized in other types of web applications, too.

Therefore, this development may indicate a beginning of a new

kind of emerging business model.

4. TOWARDS OPEN DATA MASHUPS
In addition to data that is available via online services, there is

more and more data that is produced by users. Some of this data is

uploaded to services such as Flickr.com or Youtube.com where

numerous people can access the data. However, it is also possible

to upload material that is meant to be for personal use to clouds.

Then, the cloud provider will take care of numerous routines such

as backing up the data in case of equipment malfunction.

Moreover, different social media and networking utilities allow

sharing of different items, which enables distribution and

consumption of data at a rate that exceeds all traditional means.

This Data-as-a-Service approach is spearheaded by the Open Data

(http://en.wikipedia.org/wiki/Open_data) movement, which

advocates the transformation towards open – but still secure –

services. The Open Data movement, reflecting the ideals of other

open movements, such as open source, open content, and open

access, is building on the idea that data should be made freely

available for everyone to use, refine, and redistribute. The term

Open Data itself is more recent, and has become popular with the

launch of numerous open data government initiatives, like

data.gov.

In general, combining open data with personal data and

crowdsourcing requires services enables services that reflect

several dimensions of citizens’ lives. Today, such dimensions are

only available for individual companies, and individual persons

have little opportunities regarding the data associated with them;

the data is kept proprietary for business reasons as it helps in

creating e.g. better marketing strategies. In fact, it is becoming

less and less clear what kind of data is being stored regarding

individuals and their actions in proprietary web sites.

Finally, we do wish to acknowledge that while sometimes

considered harmful, proprietary use of data has also helped with

protecting privacy. When considering open data and its links with

other sources of data, additional considerations are necessary.

This, together with e.g. terms of use in different services, requires

that special attention is placed to privacy.

5. IMPLEMENTATION
In this section, we introduce our proof-of-concept implementation

that enables developing applications that use data from various

gadgets.

5.1 Wellness Warehouse Engine
Our proof-of-concept implementation is geared towards the well-

being domain. A person's well-being is sum of numerous factors,

including for instance sleep, activities during the day, and

nutrition, to name some obvious examples. As these factors are so

fundamental, sensors measuring them have recently become

popular – for instance Fitbit, Beddit, Withings, Jawbone, Nike

Fuel, OmegaWave, Endomondo, Sports Tracker, Polar, and

Suunto are some of the most well-known brands in the field.

Unfortunately, all this data is in service providers’ silos, and all

wellness apps must connect to them. Consequently vendor lock

effect is tight for users; changing from Endomondo to Sports

Tracker simply does not happen, as in many cases having access

to history data is important.

Our system, called Wellness Warehouse Engine (W2E, homepage

at http://w2e.fi/) solves the problems associated with vendor-

specific silos. The service connects to the silos and collects the

wellness data to one service. The benefits of including all the data

into one service are many:

 Data is unified during the process; all measurements same

units and presentations.

 Multi-sensor analyses are possible.

 Wellness apps connect only to W2E, not to all possible

silos.

 Wellness data can be accessed with a well-defined REST

API, which makes it easy to compose client applications.

While a JavaScript API would simplify the development of

apps that run inside the browser, we found using REST API

as a simpler alternative for apps that are run in mobile

devices.

The W2E system has three main functions that we have been

studying. These are gathering, unifying, and analyzing data. Each

of these is addressed in more detail in the following.

 Gathering. W2E accesses numerous wellness services. The

data from these source services is stored for later

processing. Service authentication is centralized to W2E for

most convenient user experience.

 Unifying. W2E service provides the data in varying formats.

For instance, units of measurement and data frequency are

service-provider dependent. By unifying the data we enable

coherent input for analysis and other use.

 Analysing. Further analysis of the data enables you to

provide quantified feedback for the users. Our automatic

background processing calculates analysis as soon as the

source data is available. Prefilled forms are available to use

subjective data in analysis.

5.2 Clients
Originally the main idea of W2E was simply to gather and host

data, but lately also some client applications have been

implemented to demonstrate the options offered by W2E. These

clients are addressed in the following.

 Activity Calendar. To demonstrate the capabilities of mashing

up content from various devices, we created a wellness

calendar (Figure 2). This application is a full-fledged calendar

where user's well-being activities are visualized as daily

events. More detailed view of an activity event can be seen by

clicking it. The activity events can be browsed one month or

one week at a time.

 Dashboard. This application visualizes all data of a W2E user.

There are two views that are provided to the data (Figures 3

and 4). The single day view shows detailed activity during one

day, and the longer view visualizes changes in one's well-

being over one week to six months.

Figure 2. Calendar application.

Figure 3. Dashboard application – single day view.

Figure 4. Dashboard application – longer view.

5.3 Implementation Details
Server-side has been implemented with Python using Django

framework (https://www.djangoproject.com). Django emphasizes

reusability and “pluggability” of code components. The server has

a plugin for each of the data source services. Each plugin has the

functionality for accessing and unifying the data.

Data is separated into two distinct databases. A relational database

(MySQL, http://www.mysql.com) is used for storing user

information and access tokens to source services. A NoSQL

(MongoDB, http://www.mongodb.org) database is used for

storing the data from the gadgets. Most of the data from gadgets is

in JSON (JavaScript Object Notation) format, which is ideal for

NoSQL.

Figure 5 shows the internal structure of W2E. Rest API handles

all communication from the client programs. The Mashup server

requests data from all of the data source services using the

“Service access”. Received data is stored without any

modification to “RAW data”. The data is also unified and stored.

Client programs are offered both the raw and unified data. The

data can be further processed with Analyser component. Data

analyzing could also be done by client programs.

Figure 5. Internal structure of W2E.

Both client applications have been implemented as web

applications using HTML, CSS, and JavaScript using the

AngularJS framework (http://angularjs.org). No native client for

mobile devices have been implemented yet.

5.4 Future Work

We are currently working on integrating the mashup service with

Taltioni (http://www.taltioni.fi/en), a Finnish Personal Health

Record (PHR) organization aiming at offering citizens, health care

professionals, and well-being service providers a common health-

and wellness information database.

Analyzing the actual data that we are hosting is still mostly future

work. We have experimented simple calculations, such as moving

averages and implemented questionnaire forms to calculate PSQI

(Pittsburgh Sleep Quality Index) values. We are doing

collaboration with the Department of Signal Processing and

hoping to create more advanced analyzing in the future.

At the moment W2E supports only a handful of gadgets. Support

for additional gadgets that are offering open developer APIs is

planned. Adding new data sources is made as easy as possible

with the plugin-architecture on the server.

Users have to grant W2E access to their data on data source

services, in order for W2E to be able to access the data.

Additionally, users can link services as data sinks that are using

the collected data. It might get complicated for users to

understand what each application is allowed to access and do.

Therefore, we are planning to conduct large-scale usability tests

related to account management, authorization and data flows.

At this point, we are planning to have co-operation with other

research institutes to support research with the data that has been

already gathered. As the data sources and amount of data are

growing, we are getting more and more possibilities for research.

In the long run, our goal is to get as many users to W2E as

possible in order to increase the amount of data available for

research purposes, however keeping in mind the anonymity of our

users. As for new users, continuity of a service is considered very

important. Therefore, to ensure this project will not stay only an

academic exercise that would eventually fade away, we are

planning to establish a startup company to offer the service

commercially.

6. LESSONS LEARNED
Device manufacturers have web services for storing data from

their devices. Each vendor hopes to build the best services for

their users, to avoid the users from changing to other vendor

devices. In the past, this has led to storing all the data to vendor-

specific silos. However, more recently vendors are starting to

realize that by opening the data to other applications, users are

getting more value from the devices, which in turn may increase

device sales. Vendors are concentrating more on the devices,

which is their main source of income and area of expertise.

Applications that are based on the devices, on the other hand can

be created either by the device manufacturers themselves or by

some third party. Even today, original equipment manufacturers

that provide the devices can require in their license terms that all

user-related data is erased, whereas we would at very least like to

preserve data in anonymized form.

Silos that are preventing the use of data form different sources,

result also from different units and formats of the data. Therefore

unification is a necessary step, because we need to be able to

compare as well as use the same type of data that originates from

different sources. This also helps when dealing with

implementation changes in different versions of interfaces in the

devices.

Data should only be unified, not simplified. Clients should be

aware that data from different sources may be diverse. Even after

unification, some data may be more detailed than other. API

documentation must be comprehensive, so that client application

developers know what kind of data to expect. Furthermore, two

data sources may be describing the same phenomena. For

example, sleep can be tracked with two devices at the same time.

It is not the server’s job to decide which of these is more accurate

or relevant in each use case. It can be left for the client to decide

which data it uses.

Some data sources offer time in user’s local time while others use

Coordinated Universal Time (UTC). Time should always be

transformed to UTC on the server. Local time zone should also be

stored and offered to client programs, since they most likely want

to show local time to the users. In fact, the time may not even

reflect the actual data, but for instance reflect the time and date

the device is using as the default upon booting for the first time.

Obviously, preparing to all such anomalies is in general

impossible.

7. CONCLUSIONS
The number of different gadgets used to monitor wellbeing has

been rapidly increasing. In order to avoid vendor-specific silos

that prevent the use of data collected with such devices, we have

created an open data mashup system, where data from different

sources is automatically unified in order to enhance

interoperability. In the present implementation, data is kept for

personal use only, but in the future we envision social networking

as well as business opportunities, to the extent of launching a

startup company to host the data.

At present, we have launched the first official beta release open

for public. The system has been up and running for a few months

with the number of users steadily increasing. Furthermore, some

organizations have been provided with API documentation and

data access to databases for testing the interface within their own

applications. Experiences on these issues will be reported

separately as a part of future research.

ACKNOWLEDGMENTS
This research has been supported by TEKES (project RICTI) and

SITRA. In addition, the authors would like to thank Pekka

Turunen and Tuomas Teuri from Taltioni and Arto Leppisaari

from Movendos for their time, knowledge, and connections.

8. REFERENCES
[1] Salo, J., Aaltonen, T., Mikkonen, T.: MashReduce: Server-

side mashups for mobile devices. In Proceedings of the 6th

international conference on Advances in grid and pervasive

computing (GPC'11), Jukka Riekki, Mika Ylianttila, and

Minyi Guo (eds.), pp. 168-177, Springer-Verlag, Berlin,

Heidelberg (2011).

[2] Yu, S., Woodard, C. J.: Innovation in the Programmable

Web: Characterizing the Mashup Ecosystem. In Service-

Oriented Computing Workshops (ICSOC’2008), George

Feuerlicht and Winfried Lamersdorf (Eds.). Lecture Notes In

Computer Science, Vol. 5472, pp. 136-147, Springer-Verlag,

Berlin, Heidelberg (2008).

[3] Hoyer, V., Stanoesvka-Slabeva, K., Janner, T., Schroth, C.;

Enterprise Mashups: Design Principles towards the Long

Tail of User Needs. IEEE International Conference on

Services Computing (SCC '08), vol.2, pp. 601-602 (2008).

[4] Bosch, J.: From software product lines to software

ecosystems. In Proceedings of the 13th International

Software Product Line Conference (SPLC '09), pp. 111-119.

Carnegie Mellon University, Pittsburgh, PA, USA (2009).

[5] Mikkonen, T., Salminen, A.: Towards a reference

architecture for mashups. In Proceedings of the 2011th

Confederated international conference on On the move to

meaningful internet systems (OTM'11), Robert Meersman,

Tharam Dillon, and Pilar Herrero (eds.), pp. 647-656.

Springer-Verlag, Berlin, Heidelberg (2011).

[6] Salminen, A., Mikkonen, T., Nyrhinen, F., Taivalsaari, A.:

Developing client-side mashups: experiences, guidelines and

the road ahead. In Proceedings of the 14th International

Academic MindTrek Conference: Envisioning Future Media

Environments (MindTrek '10) pp. 161-168. ACM, New

York, NY, USA (2010)

[7] Weiss, M., Sari, S.: Evolution of the mashup ecosystem by

copying. In Proceedings of the 3rd and 4th International

Workshop on Web APIs and Services Mashups (Mashups

'09/'10). ACM, New York, NY, USA (2010).

[8] Taivalsaari, A.: Mashware: The Future of Web Applications.

Technical Report. Sun Microsystems, Inc., Mountain View,

CA, USA (2009).

[9] Salminen, A.: Mashups in Web 3.0. In Proceedings of 8th

International Conference on Web Information Systems and

Technologies (WebIST'2012, 18-21 April, 2012, Porto,

Portugal) pp. 189-194. ACM, New York, NY, USA (2012).

[10] Hendler, J.: Web 3.0 Emerging. Computer 42, 1 (January

2009), pp. 111-113 (2009).

[11] Silva, J. M., Mahfujur Rahman, A. S., El Saddik, A.: Web

3.0: a vision for bridging the gap between real and virtual. In

Proceedings of the 1st ACM international workshop on

Communicability design and evaluation in cultural and

ecological multimedia system (CommunicabilityMS'08) pp.

9-14. ACM, New York, NY, USA, (2008).

[12] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web,

Scientific Am., May 2001, pp. 34–43 (2001).

[13] Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web

Revisited. IEEE Intelligent Systems 21, 3 (May 2006), pp.

96-101 (2006).

[14] Ed. Hickson, I. (2011) HTML5 Specification, working draft,

W3C. http://www.w3.org/TR/html5/ Cited 15 Oct 2012.

[15] Ed. Marrin, C. (2011) WebGL Specification 1.0. Khronos

Group. https://www.khronos.org/registry/webgl/specs/1.0/

Cited 15 Oct 2012.

[16] W3C (2010) Cross-Origin Resource Sharing.

http://www.w3.org/TR/cors/ Cited 15 Oct 2012.

[17] MacManus, R., Schmidt, E. (2007) Defines Web 3.0.

http://www.readwriteweb.com/archives/eric_schmidt_defines

_web_30.php Cited 15 Oct 2012.

[18] Salminen, A., Mikkonen, T.: Mashups – Software

Ecosystems for the Web Era. In Proceedings of ICSOB’2012

4th International Workshop on Software Ecosystems (2012).

[19] Mcilroy, D.: Mass-Produced software components. In

Proceedings of the 1st International Conference on Software

Engineering, Garmisch Pattenkirchen, Germany, pp. 88–98

(1968).

[20] Mikkonen, T., Taivalsaari, A.: The mashware challenge:

bridging the gap between web development and software

engineering. In Proceedings of the FSE/SDP workshop on

Future of software engineering research, FoSER’10, pp.

245–250, ACM New York, NY, USA (2010).

[21] Mikkonen, T., Salminen, A.: Implementing Mobile

Mashware Architecture: Downloadable Components as On-

Demand Services. In Proceedings of The 9th International

Conference on Mobile Web Information Systems (2012).

[22] Ed. Hickson, I. (2012) Web Workers. Candidate

recommendation, W3C, May 2012.

http://www.w3.org/TR/workers/. Cited 15 Oct 2012.

[23] Taivalsaari, A., Mikkonen, T.: Mashups and Modularity:

Towards Secure and Reusable Web Applications. In

Proceedings of the First Workshop on Social Software

Engineering and Applications (2008).

[24] Brooks, R.: The next 50 years. Communications of the ACM,

51(1): pp. 63-64 (2008).

[25] Wang, G., Yang, S., Han, Y.: Mashroom: end-user mashup

programming using nested tables. In Proceedings of the 18th

international conference on World Wide Web, pp. 861-870

(2009).

[26] Xuanzhe, L., Zhao, Q., Huang, G., Jin, Z., Mei, H.: iMashup:

assisting end-user programming for the service-oriented web.

In Proceedings of the IEEE/ACM international conference

on Automated software engineering. ACM, New York, NY,

USA, 285-288 (2010).

[27] Crockford, D. Javascript: The Good Parts. O'Reilly Media,

Inc. (2008).

