
An Open Source Software Directory
for Aeronautics and Space

Andreas Schreiber
Simulation and Software

Technology
German Aerospace Center

(DLR)
Linder Höhe, 51147 Cologne,

Germany
andreas.schreiber@dlr.de

Roberto Galoppini
SourceForge

11216 Waples Mill Rd.
Fairfax, VA 22030

United States
rgaloppini@geek.net

Michael Meinel
Simulation and Software

Technology
German Aerospace Center

(DLR)
Rosa-Luxemburg-Str. 2,

10178 Berlin
Germany

michael.meinel@dlr.de

Tobias Schlauch
Simulation and Software

Technology
German Aerospace Center

(DLR)
Lilienthalplatz 7, 38108

Braunschweig
Germany

tobias.schlauch@dlr.de

ABSTRACT
In aerospace engineering, as well as in many other disci-
plines, many software tools are developed. Often, it is hard
to get an overview of already existing software. Sometimes
this leads to multiple development of software, if nobody
is able to determine whether a software for a specific tasks
exist already or not. Therefore, in companies and organi-
zations there is a need for a directory of exiting software.
The German Aerospace Center has built such a directory
based on the Open Source software Allura, which is the
base software that drives the Open Source hosting platform
SourceForge.net. Allura has been customized to the needs
of the aerospace domain. The result is a software portal
for the aerospace research community, that allow to register
and categorize software. It is intendend to be used both for
Open Source and proprietary software. Employees of the
German Aerospace Center as well as the public can search
for existing software. This reduces the amount of software
developed twice and allows to get in touch with colleagues
who developed similar software.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software;
D.2.9 [Software Engineering]: Management; H.3.5

ACM acknowledges that this contribution was authored or co-authored by
an employee, contractor or affiliate of the national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or re-
produce this article, or to allow others to do so, for Government purposes
only.
OpenSym ’14, August 27 - 29 2014, Berlin, Germany
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-3016-9/14/08 ...$15.00
http://dx.doi.org/10.1145/2641580.2641630.

[Information Storage and Retrieval]: Online Informa-
tion Services—Web-based services; K.4.3 [Computers and
Society]: Organizational Impacts—Computer-supported
collaborative work ; K.5.1 [Legal Aspects of Computing]:
Hardware/Software Protection—Licensing

General Terms
Management

Keywords
Open Source, Reusability, Software Engineering, Aerospace

1. INTRODUCTION
In space and aerospace engineering, computers play

a central role. The used software includes mission-critical
real-time software embedded into technical systems, efficient
codes for simulation with demands for high performance,
software for supporting complex tasks such as data man-
agement and computational steering of large distributed
computations, and software for many users such as web-
based applications. The development of software is a core
activity at most institutes of the German Aerospace Center
(DLR). About a quarter of DLRs manpower is assigned to
it. Projects range from small software tools developed by
students to large long-term cooperations with other research
centers, academia, and industry.

In most developments the consistent use of freely available
Open Source software leads to a noticeable reduction of de-
velopment time. Sometimes only 10% of the software needed
by a project has to be written from scratch. Other bene-
fits include the stability of well-tested Open Source software
packages and their constant further development. Overall,
Open Source software is an important key technology used
by many DLR projects.

At DLR, a variety of different Open Source software tools
are used. At the operating system level Linux is applied
as desktop or server configuration. For the development
of software, free interpreters, free compilers, and various li-
braries are used. Web-based applications are often realized
using frameworks such as Django, TurboGears, or Spring.
Software developers at DLR are using free integrated de-
velopment environments, such as Eclipse, and development
tools, such as Subversion or Mantis.

Many space projects in the areas of concurrent engineering
or simulation-based testing apply model-driven development
and model search technologies. Open Source software prod-
ucts used for these purposes include openArchitectureWare,
Lucene, openSESAME, Eclipse with EMF, and DLRs own
Open Source framework RCE [16].

DLR publishes many of its own developments as Open
Source and so allows others to use the software or even
participate in its development. Also, DLR actively takes
part in ongoing Open Source projects by contributing source
code or by coordinating the development. The involvement
in Open Source projects is published at Open Source con-
ferences (e.g., ApacheCon, PyCon, EuroPython, or Eclipse
Summit).

To have an overview of all software products (both open
source and proprietary) a central software catalogue can be
used, where employees of the organization can register their
software and search for existing software of other colleagues.
The goal is, to have a platform for sharing knowledge about
existing software. And about software, where others employ-
ees are involved. Optional, anyone can host their software
on the site in a similar way as in platforms such as Source-
Forge, Google Code, or GitHub. If the site is public, it can
be used for anyone to search for software products of the or-
ganization. Overall, its going to be a “Forge”-like platform
for software from aeronautics and space.

The remainder of the paper is organized as follows. In Sec-
tion 2, we discuss some related work on software catalogues.
Section 3 explains the requirements for the software portal.
In Section 4, we describe the architecture and the underly-
ing technology and Section 5 presents the result. Finally, we
describe conclusions and future work in Section 6.

2. RELATED WORK
Software directories and catalogues exist in many vari-

ants. Usually, these existing solutions are Web-based. Some
of them are open to the public. Others are closed and used
within companies or groups of organizations. Many software
directories restrict the registered software im some way, such
as application domain, type of license, programming lan-
guage or others.

Widely used as software directories for Open Source
software are public code hosting and collaboration plat-
forms (also named software “Forge” [12]). Examples are
Google Code [6], GitHub [5], or SourceForge [11]. These
platforms all have functionality to support collaborative
software development in distributed teams, as it happens
in Open Source development. But an all cases, there is the
possibility to search for existing software based on full text
search. It’s also possible to find software based on tags or
categories (see Figure 1 for an example).

More dedicated as software directories are Web sites like
Ohloh [8] or the FSF Free Software Directory [4]. They do
not provide code hosting functionality. But everybody can

Figure 1: SourceForge.net Website with search re-
sults. The search term was ’provenance’ and the
results were narrowed using filters for ’Categories’
and ’License’ (Link: http://s.dlr.de/t6b8).

add software to the directory, similar to code hosting plat-
forms. These directories are focused on finding software—
and sometimes also people who develop software.

Another type are platforms, that very much like news sites
or blogs. Users can register software and expose information
about version updates. The most recently updated software
is presented chronologically. Such platforms usually have the
ability to categorize software in many ways and functional-
ity for browsing and searching for software. An example is
Freshmeat [3].

Much more specific are software directories for a certain
programming language, framework, or platform. Some-
times, such platforms have functionality to query software
with an API and deliver software for automatic installation.
An example is the Python Package Index (PyPI [10]). Users
can register Python packages as well as search and browse
for packages. The packages registered in PyPI can be in-
stalled automatically using standard Python installation
and build tools. Other—even more specific examples—are
the OpenComparison Web sites [9] for the Python Web
frameworks Django, Plone, and Pyramid.

A variant of these platform specific directories are software
stores or markets for certain operating systems. Examples
are the App Store for Apple devices or the Android Market.
In these directories, software is registered and categorized as
in all above directories. But there focus in on easy delivery
of executable software to the target devices. The software
can be either free or payed.

Finally, many domain specific software directories exist.
Such as the Building Energy Software Tools Directory [2] or
the NASA Open Source directory [7].

3. SOFTWARE PORTAL REQUIREMENTS
This section shows the technical and non-technical re-

quirements for the software portal. Separated in the general

goals and the list of major requirements.

3.1 General goals and essential requirements
At the about 33 institutes at DLR, many software pack-

ages and products are developed. In internal surveys, we
found that in all but one of these institutes, software is be-
ing developed. The amount, requirements, and used soft-
ware technologies very in a very broad range. A common
problem in almost all institutes is, to get an overview of all
software developments. This is even more complicated for
across different institutes.

Therefore, the major, most essential non-technical re-
quirement is that employees can get an overview of all
software software packages, tools, and products that have
beed developed at DLR. It must be possible to search for
existing software efficiently. The intent is to avoid multiple
development of software. Here, existing software can either
be final versions of software that is ready for use or software
that is under development.

A side aspect of the major requirement is the search for
colleagues who work on similar software or application do-
mains. This can be useful to get contact to people who have
similar problems and technical challenges.

Another major requirement is that the software portal is
a browsable directory of all software. For that, software
must be added to the directory with necessary meta data to
allow meaningful classification. For example, it should be
possible to browse software developed by a certain institute
or software for signal processing only.

3.2 Major requirements
All major requirements in more detail are as follows.

3.2.1 Web based
The software portal must be Web based. In general, a

directory for software could be realized as a desktop appli-
cation. But a Web based system is much easier to access for
a large group of people, since installation of software is not
necessary.

3.2.2 Access control
Access to the software portal must be controllable with

a role based access control. Every entry in the directory
should have its required visibility. The standard access level
for projects should be read-only access for everybody (pub-
lic). Write and change access is granted to employees only.
Usually, only the members of a particular software project
have access to change an entry. It should be possible to re-
duce visibility and access. For example, classified software
should not be visible to public or all institutes.

3.2.3 Basic project information
Entries for software must include some basic information.

This includes the name of the software, a short description, a
logo, a link to the project home page, the name of the fund-
ing project, the name(s) of developer(s), and the responsible
institute and department. Of course some information does
not apply for certain software projects. Then this informa-
tion is left out.

3.2.4 Categorization
In addition to the basic information, each entry must be

categorized. The most important categories are the kind of

software, the license, the programming language, the criti-
cality, the application domain, and the research area (space,
aeronautics, transportation, energy, or security). These cat-
egories should allow to narrow search results using faceted
navigation and browsing [14].

3.2.5 Tags
The portal must allow free tagging of entries. This gives

additional options for classification and browsing.

3.2.6 Screenshots and diagrams
It must be possible to add an arbitrary number of images

to an entry. This is useful to provide screenshot or diagrams
to illustrate the software.

3.2.7 Public page
For each entry in the software directory that has public

access, there should be a public page. This page could act
as a default home page for the software. The portal should
use URLs to such home pages, that are readable (i.e., no
generated cryptic URL path).

3.2.8 Code hosting
Hosting the software is a requirement demanded by

many colleagues. This would mean to provide a source code
repository as well as basic software engineering tool support.
Code hosting is especially useful for Open Source projects
where external partners cooperate with DLR. The source
code repository is still stored in DLR which is required or
desired in many projects.

3.2.9 Collaboration and documentation
The software portal should have support for collaboration

and documentation tools. This is useful or necessary either
during the development of software or for providing support
for software. The typical collaboration tools, such as a forum
for discussions, mailing lists, or a wiki, should be available.
The collaboration could be either open for public access or
restricted to developers or employees only, depending on the
projects scope and requirements.

3.2.10 Commenting and rating
In addition to collaboration features, it should be possible

to comment and rate entries. While comments are a spe-
cial variant of discussions (cf. discussion in forums), rating
could be useful for decision making. For example, users can
decide whether an entry with a certain rating is worth to
look at. Or managers could decide to react somehow on
notably good or bad rated software projects (i.e., to assign
more developers or to abandon the development).

3.2.11 Social media integration
Integration with social platforms such as Facebook, Twit-

ter, or Google+ should be present. This is useful to promote
a software project and to reach more people in case of new
or updated information.

3.2.12 Scalability
The software portal must be scalable for many users and

projects. At DLR, about 3.000 employees develop software
to some extend, working on more several hundred software
projects.

4. ARCHITECTURE OF THE SOFTWARE
PORTAL

As shown in Section 2, many different approaches are pos-
sible to realize a software directory for public or corporate
use. We had the following options. First, to buy a com-
plete software service including a software product with cus-
tomization, installation, and support. Second, to choose an
existing commercial or Open Source software and make the
customization and installation at DLR. And third, to de-
velop a completely new software portal from scratch.

To buy a complete software solution would have led to
the lowest effort by our own staff members, assumed that
the effort for gathering requirements is similar for all three
options. The effort to develop a new software system would
have been the highest of all options. Regarding the effort,
the second option lies somewhere in the middle, which very
much depends on the chosen software. On the other hand,
to develop a new software would probably have led to a
software portal that perfectly matches our requirements and
ideas. The first two options can get close but it is assumed
that some parts of the portal are compromises. Overall, we
decided to choose an appropriate Open Source software and
to do customization at DLR.

A couple of different software products have been evalu-
ated against our requirements. This includes Content Man-
agement Systems such as Plone, Weblog software such as
Wordpress, Bookmark software, and Wiki software such as
MoinMoin. The aim was to find a software, that is as close
as possible to hosting platforms like SourceForge or GitHub.
We also tried to find a software that is easy to customize and
maintain, for example, written in a maintainable language
like Python. Overall, we decided to use Allura which has
been released as Open Source in March 2011 and became an
Apache top-level project in April 2014.

4.1 Allura
Apache Allura [1] is a modular and extensible Open

Source software platform for software development. Al-
lura has been designed to be the code and project hosting
platform for SourceForge, the largest place for open source
software tools and applications: home to over 3 million
users, hosting a catalog of over 300,000 distinct projects
and serving over 50 million unique visitors per month and
over 4 million downloads per day.

Allura was designed to be scalable, delivering only what
projects need, while giving them peace of mind about the
freedom to choose if they want to host their projects on
our web hosting platform (SourceForge) or privately (on
premise). In fact many code hosting facilities don’t take into
account the ’data jail’ issue—as Eric Raymond has called
[15] the problem faced by projects’ maintainers when they
want to move out all their data from a hosting platform—
giving projects and developers little or no choice to migrate
away. Allura stands in a different dimension here, even in
other respects: it is designed to allow easy remote-script via
API, so that it can better accommodate a variety of needs.

The core Allura package includes a ticket tracker, a wiki,
forums, as well as support for popular Software Configura-
tion Management platforms like Git, Mercurial, and Sub-
version (and more are just on their way). Allura includes
several built-in extension points (see [13]):

• Allura tools such as the wiki and ticket tracker are all

implemented as plugins to make it easier to extend,
supplement or remove tools in each install.

• The Allura base package includes built in skin support
so re-branding an Allura install is easy.

• All the built-in tools are expected to have a public
API.

4.2 Customization
The customization of Allura to fulfill the requirements of

DLR basically consists of two parts. First, adoption of the
data model. And second, adaption of the Web layer.

The data model has been extended based on the require-
ments. This included additional fields in the model file of
the ORM (Object-Relational Mapping) as well as additional
categories in a script that generates the categories used for
classification and browsing.

For example, at DLR we use the following software cate-
gories:

• Signal and Data Processing

• Simulation and Modeling

• Visualization

• Software Engineering

• Communication

• Knowledge and Data Management

• Administration and Tools

• Control

The categories are configured in Allura straightforward as
shown in Figure 2.

Customizing the Web layer was mainly needed to apply
the corporate design of DLR. For rendering the Web pages,
Allura uses the Python Web framework TurboGears and the
Python Templating Engine Jinja. In our case, we changed
the Jinja templates to the style of DLR. And we added a
new output rendering of search results.

5. DLR SOFTWARE PORTAL
The software portal built using Allura is shown in Fig-

ure 3. It will be rolled out for users in the following steps,
with a feedback and adaption phase after each step:

1. Open to the public1 for searching and browsing. Ac-
cess to add entries for two selected institutes of DLR
and for selected users. Code hosting is disabled.

2. Access to every DLR employee for adding entries.
Changed layout for project home pages, project edi-
tor, and user profile pages.

3. Extended features for faceted search and browsing
added.

4. Code hosting enabled. Access to registered external
users (who must have an account at DLR, which is
usually given to project partners or students).

1http://software.dlr.de

class CreateTroveCategoriesCommand(base.Command):

...

def command(self):
log.info("Creating trove categories...")
self.basic_setup()
M.TroveCategory.query.remove()
self.create_trove_cat((1,0,"program",

"Programmthema","Programmthema"))
self.create_trove_cat((2,0,"topic",

"Softwaretyp","Softwaretyp"))
self.create_trove_cat((3,0,"language",

"Programmiersprache","Programmiersprache"))
self.create_trove_cat((10,1,"other","Anderes",

"Programmthema :: Anderes"))
self.create_trove_cat((20,2,"other","Anderer",

"Softwaretyp :: Anderer"))
self.create_trove_cat((21,2,"sdp","Signal- und Datenverarbeitung",

"Softwaretyp :: Signal- und Datenverarbeitung"))
self.create_trove_cat((22,2,"simulation","Simulation und Modellierung",

"Softwaretyp :: Simulation und Modellierung"))
self.create_trove_cat((23,2,"visualisation","Visualisierung",

"Softwaretyp :: Visualisierung"))
self.create_trove_cat((24,2,"communication","Kommunikation",

"Softwaretyp :: Kommunikation"))
self.create_trove_cat((25,2,"knowledge","Wissens- und Datenmanagement",

"Softwaretyp :: Wissens- und Datenmanagement"))
self.create_trove_cat((26,2,"admintools","System-Administration und Werkzeuge",

"Softwaretyp :: Wissens- und Datenmanagement"))
self.create_trove_cat((27,2,"control","Steuerung und Regelung",

"Softwaretyp :: Steuerung und Regelung"))
...

Figure 2: Creation of categories in Allura (excerpt).

For now, users (i.e., employees or external partners) must
have an account at the DLR corporate Active Directory
(AD) service. By default, all employees of DLR have AD
accounts during runtime of their contracts. AD accounts for
external users must be applied by an employee.

Figure 4 shows an example of an entry2. In this case,
for the conceptual geometry libray TiGL. The source code
TiGL is hosted at Google Code, and the entry refers to the
Google Code project page.

6. CONCLUSIONS

6.1 Summary
The major goal of the described work was to build a cor-

porate software directory for DLR. Although not the driv-
ing goal, it was also desired to have a software portal with
code hosting functionality. Both goals are important for a
distributed research center like DLR, with 16 sites across
Germany and many external project partners across the
globe. Because getting an overview about ongoing software
projects and already existing software is very difficult—if
not impossible—without an effective corporate software di-
rectory.

The DLR software portal will be the central software di-
rectory of DLR. It is not a competitor to existing software
directories or hosting platforms. Especially, it does not com-
pete against Open Source hosting platforms, since we are

2http://software.dlr.de/p/tigl

focusing on all software from DLR which is usually pro-
prietary, closed source software. Therefore access to many
projects will be restricted to DLR employees or members
of individual departments only. The application domain is
also clearly restricted to aerospace science and engineering
as well as the other DLR research areas transportation, en-
ergy, and security.

The software portal has been realized based on the Open
Source software platform Allura by SourceForge. Allura is
used for the code hosting platform SourceForge.net. This
clearly proves that Allura is a suitable choice for building a
software directory with code hosting functionality.

6.2 Future work
Many topics for future work are already identified. First,

a faceted search and browsing will be added. This will allow
to narrow down search results based on categories, research
areas, institutes, and others. This is mainly and extension
of the Web layer, since the underlying search engine Solr has
support for faceted search.

Second, a tight integration with external code hosting
platforms will be added. For example, if an Open Source
project is hosted at SourceForge already, the project entry in
the DLR software portal should refer to the remote project
in a transparent way. In case of SourceForge, this might
be a future standard feature of Allura. But we also like to
integrate closed source code repositories hosted within DLR
as well.

And third, we are going to extend the portal towards an
knowledge management system. The main focus here is,

Figure 3: DLR Software Portal.

Figure 4: Software Portal entry for TiGL.

to find colleagues with certain skills. For this, the software
portal will be integrated with other tools and portals at DLR
which expose information about skills and existing know-
how. Regarding software development, our goal is to enable
search for experts in the various programming languages,
software technologies, or application domains. Additionally,
an integration with DLR’s literature database is planned to
allow seamless access to publications about a software.

7. REFERENCES
[1] Apache allura web site. https://allura.apache.org.

[2] Building energy software tools directory.
http://apps1.eere.energy.gov/buildings/tools$_

$directory/.

[3] Freshmeat web site. http://freshmeat.net/.

[4] Fsf free software directory.
http://directory.fsf.org/.

[5] Github web site. http://github.com.

[6] Google code web site.
http://code.google.com/hosting/.

[7] List of nasa open source web site.
http://ti.arc.nasa.gov/opensource/projects/.

[8] Ohloh web site. http://www.ohloh.net/.

[9] Opencomparison web site.
http://opencomparison.org.

[10] Python package index (pypi) web site.
http://pypi.python.org/.

[11] Sourceforge web site. http://sourceforge.net.

[12] Wikipedia forge (software). http:
//en.wikipedia.org/wiki/Forge$_$(software).

[13] R. Copeland. Using the allura platform to create your
own forge. Poster, 2011.

[14] M. A. Hearst. Clustering versus faceted categories for
information exploration. Communications of the
ACM, 49(4), 2006.

[15] E. S. Raymond. Three systemic problems with
open-source hosting sites.
http://esr.ibiblio.org/?p=1282, 2009.

[16] D. Seider, M. Litz, P. Fischer, A. Schreiber, and
A. Gerndt. Open source software framework for
applications in aeronautics and space. In IEEE
Aerospace Conference 2012, pages 1–11. IEEE, March
2012.

