
WikiGateway: a library for interoperability and accelerated
wiki development

Bayle Shanks
http://communitywiki.org/BayleShanks

Computational Neurobiology
University of California

San Diego, La Jolla, CA 92093

bshanks at ucsd.edu

ABSTRACT
WikiGateway is an open-source suite of tools for automated
interaction with wikis:

• Python and Perl modules with functions like getPage,
putPage, getRecentChanges, and more.

• A mechanism to add DAV, Atom, or XMLRPC capa-
bilities to any supported wiki server.

• A command-line tool with functionality similar to the
Perl and Python modules.

• Demo applications built on top of these tools include a
wiki copy command, a spam-cleaning bot, and a tool to
recursively upload text files inside a directory structure
as wiki pages.

All WikiGateway tools are compatible with a number of
different wiki engines. Developers can use WikiGateway to
hide the differences between wiki engines and build applica-
tions which interoperate with many different wiki engines.

Categories and Subject Descriptors
D.2 [Software engineering]: Interoperability
; H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces; H.4 [Information systems
applications]: Communications Applications

General Terms
Standardization, Design

Keywords
wiki, interwiki, interoperability, WikiGateway, client-side
wiki, WikiClient, middleware, Atom, WebDAV, WikiRPCIn-
terface, wiki XMLRPC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’05,October 16-18, San Diego, CA, U.S.A.
Copyright 2005 ACM 1-59593-111-2/05/0010 ...$5.00

Related resources
Related resources may be found at http://purl.net/bshanks/
work/papers/wikigateway_wikisym05/. These may include
talk slides, amended or hypertext versions of this paper, and
pointers to related work. It is suggested that the reader
check there for updates before reading this paper.

1. INTRODUCTION
WikiGateway is a suite of tools that allows developers to
write programs that act as clients to wiki servers. Wiki-
Gateway provides a unified interface to different types of
wiki engines. “Wiki engine” refers to a type of wiki server
software; for example, MoinMoin is a wiki engine.

There are a few different ways of communicating with wiki
servers using WikiGateway tools. These options can be
grouped in two categories; either the client software uses
WikiGateway components installed on the local machine, or
it communicates with a WikiGateway web service installed
elsewhere.

The simplest way to interact with wikis is for software run-
ning on the client machine to call a WikiGateway library
function or tool. WikiGateway provides modules for Python
and Perl, and also a command-line client. Appendix A gives
a demonstration of various WikiGateway Python module
functions. Appendix B shows example invocations of the
WikiGateway command-line client.

However, WikiGateway also allows people to run web servers
that act as gateways; these intermediaries accept requests
from the client using a standardized protocol, and translate
them into requests to the actual wiki server (which may be
running on yet another machine). WikiGateway provides
tools to run servers that understand the WebDAV, Atom,
or WikiRPCInterface protocols [37, 11, 21, 2, 13, 23]. Wiki-
Gateway also provides a server that exposes an XML-RPC
interface to the Python WikiGateway module.

WikiGateway includes a few “demo applications” to show
how it can be used. These include a despamming bot, a
script to copy an entire wiki onto another wiki, and a script
to upload a hierarchial directory structure of text files to
a wiki (treating each text file as wiki markup source for a
single wiki page).

http://purl.net/bshanks/work/papers/wikigateway_wikisym05/
http://purl.net/bshanks/work/papers/wikigateway_wikisym05/

This paper will begin by describing the reasons for building
WikiGateway, including why WikiGateway will help wiki
technology to develop faster, and what kinds of software
WikiGateway will allow others to build. Next, potential
disadvantages of building something like WikiGateway are
explored. The design and implementation of WikiGateway
are described, followed by a description of demo applications
which were written as examples of WikiGateway usage. Fi-
nally, future plans for WikiGateway are discussed, including
a list of additional demo applications to be developed.

2. MOTIVATIONS
There are quite a few reasons that a project like Wiki-
Gateway is needed. First, developers are already writing
“screen-scraping”-style code to interact with wiki servers; it
would be more efficient for the community to write this code
“once and only once” in a single library. Second, there are
standardized protocols that wiki servers could support, but
often don’t; WikiGateway provides gateway servers to al-
low clients which speak standard protocols to communicate
with wiki servers. Third, making wikis more interoperable
will aid communications not only with other types of tools,
but also between different wiki sites. For example, giving
programs the ability to automatically talk to wiki servers
is a prerequisite for automated wiki page interchange. Fi-
nally, by allowing new ideas to be implemented as “uni-
versal” client-side tools rather than as server-side features,
WikiGateway will help with the problem of the division of
developer effort among different wiki engines. These moti-
vations are elaborated upon below.

2.1 A central collection of screen-scraping code
Developers are already spending time implementing inter-
faces to wiki engines [22, 35, 20, 31, 19, 33, 32]. As long
as developers are spending their time writing what is essen-
tially “screen scraping” code to talk to specific wiki engines,
why not collect all of these efforts into a single library?

In addition to making it easy for developers to know where
to go to find wiki interface code, WikiGateway has the added
advantage of providing clients with a single, unified API to
use, regardless of which specific type of software the wiki
server is running.

In the future, perhaps developers who want to write screen-
scraping code for a particular wiki engine will spend their
time writing a driver for WikiGateway.

2.2 Interoperability with standard protocols
Many useful software clients use protocols such as WebDAV
or Atom. However, there are few wiki engines which support
these protocols. WikiGateway provides a way for a DAV or
Atom client to access a wiki server, even if the wiki engine
running on the server does not know anything about DAV
or Atom.

2.3 Wiki page interchange
One much-discussed feature of the future is the ability to
programmatically move or copy a page from one wiki to
another one, even if the source and destination wiki use
different wiki software [17, 39, 27, 1, 16, 29, 7, 36]. This
would require two things:

1. The existence of software that can read and write to a
variety of different types of wiki engines.

2. The existence of software that knows how to convert
the wiki markup between a variety of different types
of wiki engine markup styles.

WikiGateway currently can do (1), and the plan is for it also
to do (2) in the future (see Section 6, “Future Work”).

2.4 Client-side tool development
Problem: fragmentation of developer effort
There are over 250 different wiki engines1. There are even
quite a few different “popular” wiki engines23. Even though
there are many wiki software developers, their combined de-
velopment effort is split into hundreds of small projects (see
Figure 1) [8].

One way to solve this problem would be to convince devel-
opers to pool their efforts and focus development on a small
number of wiki engines. This is difficult because it would
involve a lot of individual developers and small teams giving
up creative control and joining large organizations.

Another answer is to allow developers who are working on a
new feature to write a single implementation of that feature
which will be compatible with multiple wiki engines. For
many features, this could be done by implementing features
client-side rather than server-side.

Solution: implement new features client-side
With the ability to download and upload the page source
from remote wiki servers, it is now possible to implement
wiki user interfaces (UIs) partially or completely on the
client. Advanced features such as a revert button, Sub-
scribedPages, “filtered Recent changes”, a collaborative rat-
ing system for wiki pages, or “unified recent changes”4, could
all be written without altering the software running at the
server.

There are also some features that seem to “naturally” be-
long in the client. Examples include a browsing interface
based on an animated, clickable, graphical/spatial “map” of
nearby wiki pages; or a Refactoring Browser, that is, a pro-
gram specifically designed for refactoring text in wiki pages,
with special tools for moving blocks of text around between
and within pages [28].

1252 was the result of a very superficial count of the number
of entries on http://c2.com/cgi/wiki?WikiEngines, on April
21, 2005, in the “sorted by language of implementation”
section.
2This is hard to quantify, but [38] lists 9 wiki engines with
over 100,000 Google hits; [41] lists 5 popular wiki engines;
[15] lists 5 popular wiki engines; but these two 5-engine lists
have only 2 engines in common.
3I don’t mean to claim that these lists are authoritative or
exhaustive, but they do show that it is not the case that
aggregate developer effort is being concentrated on two or
three wiki engines
4 “Unified recent changes” is a single list of the Re-
centChanges of multiple wikis.

Client-side wiki software has not yet been widely developed
because, before WikiGateway, it was difficult for client-side
programs to communicate with the wiki server. Wiki servers
are designed for human clients, not programs. Different wiki
servers have different “protocols” for talking to them, each
one using their own idiosyncratic set of CGI forms. This
meant that it was very difficult to write client-side software
that would be compatible with multiple types of wiki en-
gines.

With WikiGateway, client-side tools which interoperate with
many different types of wiki engines can be easily developed.
This will allow developers to focus their time on interop-
erable client-side tools, rather than on wiki-engine specific
server-side features. In this way, the fragmentation of the
developer community can be overcome (see Figure 2).

Freedom for users to choose their wiki software
Today, if your favorite wiki doesn’t implement a particular
new feature, there is little that you can individually do. You
must use the UI that your favorite wiki runs. The develop-
ers of the wiki engine and the administrator of your wiki
must both take action to enable the end-user to use a given
feature.

WikiGateway will allow individual users to use a client-side
wiki UI of their choice to interact with their favorite wikis.
No longer must all members of a community be bound to
the same UI. However, this has disadvantages as well as
advantages; see Section 3.2, “Loss of central control over
UI”.

Wiki software will develop faster
Today, when someone imagines a new wiki feature, it can be
extremely difficult for that feature to become widely avail-
able. This is because three hurdles must be overcome:

1. The development teams of many wiki engines must be
convinced to include the feature.

2. The feature must be implemented in many wiki en-
gines.

3. Many wiki hosts (wiki server administrators) must be
convinced to upgrade their wiki server software to a
newer version incorporating the feature.

Figure 3 illustrates these problems.

Adding features on the client-side, rather than the server-
side, using WikiGateway addresses all of these problems.

1. Because the software is client-side, the development
process does not need to involve the developers of the
server-side wiki engines.

2. Because WikiGateway hides the differences between
wiki engines from the client-side application, the fea-
ture can be implemented only once, and yet work with
many wiki engines.

new feature idea

wiki engine #1
must

implement
feature

wiki engine #2
must

implement
feature

wiki engine #3
must

implement
feature

wiki administrator
must

upgrade server

wiki administrator
must

upgrade server

wiki administrator
must

upgrade server

wiki administrator
must

upgrade server

wiki administrator
must

upgrade server

wiki administrator
must

upgrade server

. . .

Figure 3: A lot of work has to be done in order to
make a new wiki feature widely accessible. Many
wiki engine development teams must implement the
feature, and many site administrators must upgrade
their wiki server.

3. Because the software is client-side, the wiki server ad-
ministrator does not need to do anything to enable the
new functionality.

With WikiGateway, new features will be able to be used
without consulting fifty developer communities, without writ-
ing fifty implementations, and without waiting for fifty thou-
sand wiki administrators to upgrade (contrast Figure 4 to
Figure 3). People who don’t care about new features can
continue to use the standard UIs provided by wiki servers,
while “power users” will be able to use client-side software
providing them with the latest and greatest. Therefore, new
feature ideas will be more quickly dispersed throughout the
total wiki user base.

2.5 Concrete examples of what WikiGateway
can be used for

See Sections 5 and 6.4 for more ideas about how WikiGate-
way could be used.

3. ARGUMENTS AGAINST WIKIGATEWAY
3.1 Security
It has always been possible to write bots that attack or spam
wikis. It is likely that the availability of WikiGateway will
assist in the development of some malicious wiki bots. It is
possible, although unlikely, that it could even catalyze an
avalanche of harmful wiki bots.

wiki
developer

#1

feature D

wiki
developer

#2

feature E

wiki
developer

#3

feature F

UseMod MoinMoin OddMuse

user

Figure 1: Because there are so many wiki engines, each engine only has a few developers working on it. The
sum total of developer effort is large, but the developer effort spent on any single wiki engine is relatively
small. So although there are many features implemented somewhere, each wiki offers only a limited set of
features. Users who visit a particular wiki can only take advantage of a small proportion of potential features.

wiki
developer

#1

feature D

wiki
developer

#2

feature E

wiki
developer

#3

feature F

client-side tool #1

User’s favorite wiki

client-side tool #2 client-side tool #3

user

Figure 2: With WikiGateway, developers can work on tools which interoperate with many wiki engines.
Developers’ time is better spent because the software they create can be used by anyone, not just the users
of a particular wiki engine. Users who visit a particular wiki can take advantage of a wide selection of tools.

new feature
idea

a client-side
tool must

implement
the feature

wiki engine #1
works with tool

wiki engine #2
works with tool

. . .

Figure 4: With client-side development, neither the
developers of all of the wiki engines, nor the admin-
istrators of all of the wiki sites need to do anything.
A client-side tool must be developed only once, and
then users can use the tool on many wikis.

However, not developing WikiGateway would not help, in
the long run. Eventually, wiki attack bots would be written
either way. Eventually, wiki servers must implement security
systems that allow wiki communities to be highly resistant
to robotic attack. WikiGateway may force wikis to become
secure sooner, but there was never any way to avoid the
need to become secure.

In fact, it’s possible that if WikiGateway were never devel-
oped, the cracker or spammer communities might eventually
have developed a similar set of tools to assist in writing ma-
licious bots.

On the other hand, developing WikiGateway provides a
number of advantages for wiki communities (see Section 2,
“Motivations”). It is even possible that WikiGateway itself
could assist in the development of software for wiki security;
for example, the WikiGateway project has produced a spam
cleaning bot. Unfortunately, unlike many aspects of wikis
which could be done at the client, security is, fundamentally,
best handled by wiki server software. This is because wiki
servers have the last word on which changes get made to the
page database.

An additional argument in favor of developing WikiGateway
is that it would be easy for individual site administrators to
“turn off support for editing via WikiGateway”. WikiGate-
way is hard-wired with algorithms to recognize the relevant
components of the edit forms of each supported wiki. A
wiki administrator could simply alter the wiki’s code so as
to make the edit form unrecognizable by WikiGateway. One
could argue that the attacker could always rewrite Wiki-
Gateway to parse the new edit form, however, if s/he is
willing to do that, then s/he could have done it without
WikiGateway in the first place.

However, I would hope that site administrators don’t take
this route, as it deprives their legitimate users of the op-
portunity to make use of tools build on WikiGateway. A
better solution would be to make WikiGateway unusable for
anonymous or newly registered users, but to make it usable
for trusted users with user accounts.

In summary, since the fundamental security problems exist
either way, we may as well develop WikiGateway technology
and reap the unique benefits that it can provide.

3.2 Loss of central control over UI
One of the motivations discussed above is “Freedom for users
to choose their wiki software”. But there are disadvantages
as well as advantages to this.

No way to constrain the user
When designing software to support online communities, it
may not always be optimal to make every potential action as
easy as possible for the user. Sometimes it may be better to
make an action annoying or difficult to do for the sake of the
group [26]. An extreme example is that a wiki interface with
a “Delete all pages” button is not good for the community,
even though all it does is provide a shortcut to something
that any user could do anyway.

When the entire community is forced to use one UI, it is pos-
sible to make some actions annoying or difficult by design.
However, when each user can choose their own UI, then it is
possible that some users will choose to use UIs that provide
shortcuts for actions that “should” be difficult.

Loss of common context
In wiki communities, the UI is part of the common context
that the whole community shares [24]. Common context is
essential for communication, understanding, and empathy.
If everyone views a wiki through a different UI, the unity of
the community may be seriously threatened.

Imagine, for example, that some people used a standard wiki
server web interface, and others used an interface whose Re-
centChanges displayed only those changes which were “rated
highly” by their friends, while a third group of users viewed
the wiki through a wiki to email gateway that emailed diffs
of changes to a user-specified list of subscribed pages. One
can imagine that these three groups may evolve very differ-
ent views of what is going on at a given time, and of what
the communal norms are.

These two concerns may seem destabilizing, but they are
really just instances of decentralization of power, from the
wiki administrator to the wiki users. Wikis are unique in
that they are extremely decentralized websites, compared
to traditional websites in which the webmaster has unique
power to write the web content. Yet wikis have taught us
that even extreme decentralization can be efficient and se-
cure.

In summary, wiki communities may have to adapt and man-
age the consequences of decentralizing power over the UI
caused by WikiGateway. However, it is likely that they will
be able to do so, and that the benefits of WikiGateway will
outweigh the costs.

4. ARCHITECTURE OF WIKIGATEWAY
The core of WikiGateway is the Python module5. All of
the other components are either wrappers around or callers
of the Python module, although some of them depend on
it indirectly. If the reader has not already done so, s/he
is strongly urged to glance at Appendix A in order to get

5WikiGateway’s core was originally written in Perl, but it
has been rewritten in Python.

a concrete feel for the sort of functionality that the core
Python WikiGateway module provides.

4.1 The Python module
The Python module is based on a collection of wiki engine-
specific drivers which implement basic I/O functions for ac-
cessing the engines which they handle.

The design goals of the Python module are as follows:

1. The module should be easy to use.

2. The drivers should be easy to develop, even if the de-
veloper is a one-off contributor who has little knowl-
edge of the WikiGateway framework.

How the caller uses the module
A caller can interact with the WikiGateway module either
in an object-oriented fashion, or in a procedural fashion. For
one-off interactions with a remote wiki, the procedural style
is more concise:

WikiGateway.getRecentChanges(

’http://interwiki.sourceforge.net/cgi-bin/wiki.pl’,

’oddmuse1’,

’April 11, 2005’)

The first two arguments in the procedural syntax are always
the URL of the remote wiki, and its wiki engine type. After
this come any arguments specific to the function; in the
example, getRecentChanges takes a timestamp to indicate
how far back you wish to receive changes.

For extended interaction with a remote wiki, the object-
oriented style is more convenient:

wg = WikiGateway.WikiGateway(

’http://interwiki.sourceforge.net/cgi-bin/wiki.pl’,

’oddmuse1’)

for change in wg.getRecentChanges(’April 11, 2005’):

pageName = change[’name’]

print wg.getPage(pageName)

WikiGateway may raise exceptions or errors in the course
of execution. Exception classes may be found in the module
WikiGateway.Errors. Examples are ReadError, EditError
and its subclass EditConflictError.

Implementation details
The procedural-style functions are implemented by instan-
tiating an object and then calling the appropriate method
on that object.

WikiGateway objects are constructed using two arguments,
the URL and the wiki engine identifier. They are actually
constructed using a class factory. At run-time, the class
factory looks at the wiki engine identifier (and possibly the
URL) and decides which of many wiki engine-specific drivers

will be used. Each driver is a class. The class factory func-
tion WikiGateway.WikiGateway instantiates an object of the
appropriate class and returns it to the caller.

For an overview of the classes used internally by WikiGate-
way, see Figure 5. All driver classes are subclasses of
WikiGateway. WikiGatewayBase, which provides common util-
ity routines which may utilize and alter instance variables
of the WikiGateway object.

WikiGateway. WikiGatewayBase is a subclass of
WikiGateway. HighLevelFunctions, which provides default
implementations of any functionality that may be built in
terms of calls to lower-level methods. An example is
revertToVersion, which is built in terms of the low level
methods getPageVersion and putPage.

Another commonly used module is WikiGateway. utils, which
provides static utility functions for use by the driver mod-
ules. For example, the function
WikiGateway. utils.getURL orReadError fetches a URL or
raises a WikiGateway.Errors.ReadError if something goes
wrong.

The driver modules themselves contain implementations of
all of the low-level methods which are specific to each wiki
engine.

The Python module is installed using the standard Python
distutils installation procedure.

4.2 The Perl module
The Perl module Wiki::Gateway is a wrapper around the
Python module WikiGateway. The Perl module Wiki::Gateway
can be downloaded and installed from CPAN[9].

Implementation details
The wrapper is constructed using
Inline::Python. It adds functionality to the Inline::Python
wrapper by individually wrapping each function with code
to intercept Python exceptions and store information about
them which can be retrieved by calling the function
Wiki::Gateway::getLastExceptionType(). In addition, it
works around an Inline::Python bug with the treatment of
unicode by encoding all unicode into ASCII before it passes
through the Inline::Python interface.

4.3 The command-line client
Appendix B shows some example invocations of the command-
line client. Note that, for convenience, the command-line
client can refer to a preferences file named .intermap to
resolve InterWiki-like shortcuts to URLs.

The command-line client is written in Perl using the Perl
Wiki::Gateway module.

4.4 Gateway servers
WikiGateway includes gateway servers to support the Web-
DAV, Atom, WikiRPCInterface2, and XMLRPC protocols.

What are gateway servers?

_utils Errors
WikiGateway class factory
instantiates driver classes

_HighLevelFunctions

UseMod 1.0 driverUseMod .92 driver OddMuse driver MoinMoin driver

_WikiGatewayBase

Figure 5: The internal classes of the Python WikiGateway module. Solid lines indicate class inheritance.
Dotted lines illustrate that the class factory selects, instantiates, and returns a driver object when the caller
creates a “WikiGateway” object. All classes can use utils and Errors.

client

WebDAV gateway server

WebDAV

Wiki server
(running standard

wiki engine)

Wiki server’s
standard web

interface

Figure 6: The gateway servers allow clients to use
standard protocols to interact with wiki servers.
The wiki servers don’t have to implement the proto-
cols themselves; the gateway server acts as a trans-
lator to translate the standard protocol into actions
on the wiki server’s normal web interface. In this
example, the gateway server is making a normal wiki
server act as a DAV resource.

Instead of forcing the client to use special WikiGateway li-
braries in order to communicate with wiki servers, there are
times when one would want make WikiGateway transparent
to the client and allow the client to use a standard protocol
to communicate with the wiki server. This is the motiva-
tion behind the gateway servers, which are independently-
running servers acting as middlemen between the client and
the wiki server. For example, consider the WebDAV gateway
server. The client sends WebDAV requests to the WebDAV
gateway. The WebDAV gateway translates these requests
into the HTTP forms requests used by the wiki server. From
the client’s point of view, it is communicating with a wiki
server that knows WebDAV. From the server’s point of view,
it is communicating with a human using its standard web
interface. Figure 6 illustrates this.

This method allows one to use client software that wasn’t
intentionally designed for wikis. This is useful because there
is more software written for protocols such as WebDAV and
Atom than there is software written especially for wikis. See
“Mounting a remote wiki as a filesystem” in Section 5 for
an example.

Gateways allow third-parties to provide web services
Note that with a gateway server, neither the the client nor
the server need to be modified or even to know that they
are dealing with WikiGateway. The client only needs to use
a standard protocol such as WebDAV. The server just has
to keep doing what it’s always doing; serving users with a
web interface.

This approach allows a third-party, that is, someone who is
in charge of neither the client nor the server, to effectively
“WebDAV enable” the wiki server. Any member of a wiki
community can provide this service without the need for the
wiki server administrator to do anything.

Implementation details
The DAV server makes it appear as if a remote wiki server
is a DAV resource. It is a WebDAV server built on top of
PythonDAV and the WikiGateway Python module.

The Atom server makes it appear as if a remote wiki
server is Atom enabled. The version of the Atom speci-
fication used is [12]6. It is an Atom server build on top of
the Perl module XML::Atom::Server2 and the WikiGateway
Perl module.

XML::Atom::Server2 was built for this project and provides
an “Atom server” class which may be used as a superclass
to build an Atom server. The class contains most of the
needed logic; all that the caller needs to add is the backend.
In this case, the backend consists of calls to the wiki server
using WikiGateway. XML::Atom::Server2 is built on top
of the Perl module XML::Atom::Server, which uses a more
bare-bones approach.

The WikiRPCInterface2 server makes it appear as if a
remote wiki server supports the nascent WikiRPCInterface
protocol, version 2.

The XMLRPC server exposes the functions of the Wiki-
Gateway Python module as an XMLRPC interface. The
server administrator presets the target wiki during config-
uration. The client can then call XMLRPC methods like
getPage and putPage on the server.

The XMLRPC server and the WikiRPCInterface2 server are
actually the same program, used with different configuration
options.

4.5 Unit tests
Many of the core parts of WikiGateway are equipped with
a unit testing framework. Specifically, the most impor-
tant functions in the Python module, the Perl module, the
command-line wiki client, the WikiRPCInterface2 gateway
server, and the Atom gateway server all have unit tests.

The unit test framework is object-oriented and hierarchial.
The top-most class is TestReadableWriteableCollection,
which is an abstract class for testing access to a collection
of documents. Lower-level classes implement the read/write
primitives depending on which component is being tested.
Since most WikiGateway components are concerned with
reading and writing collections of documents, this allows
much of the unit testing code to be reused across different
WikiGateway components.

5. DEMO APPLICATIONS
Some software tools have been created to demonstrate the
wide range of uses to which WikiGateway may be put. These
tools also provide “sample code” for other developers using
WikiGateway to look at.

wikicp
wikicp is a script to copy all of the pages from a source wiki
onto a target wiki.

6more recent versions of the Atom specification now exist
[14]

spamclean
spamclean is a bot to detect and revert spam on a re-
mote wiki. spamclean identifies spam by comparing it to
a regular-expression-based content blacklist which is down-
loaded from the internet from a user-specified location. The
blacklist is in OddMuse format[5], and one place to get one
is [30]. The bot can be configured to ask a user about each
piece of spam (interactive mode), or to revert spam auto-
matically.

Other configuration options include the length of time to
check for spam, whether to delete pages which have no spam-
less versions, and the text to put in the summary line upon
reversion. The summary line may include variables such as
information about the version to which the page is reverting.

spamclean reverts spammed pages to the most recent spam-
less version found7.

spamclean produces a log which notes, for each page with
spam, the offending spam, the diff between the spammed
version and the clean version, and the action taken.

pushWebsiteToWiki
pushWebsiteToWiki is a script that uploads a directory of
text files into a wiki. Each file in the directory is treated as
a text file containing the wiki markup source of a wiki page.
Subdirectories are also recursively uploaded. The delimiter
’-’ is used in page names to indicate from which subdirectory
the page came. For example, if website is the directory be-
ing uploaded, then a file named website/books.txt would
become the markup source for the wiki page “books”. A file
in a subdirectory with path website/ideas/robertsRules.txt

would become the wiki page “ideas-robertsRules”.

In addition, pushWebsiteToWiki creates indices for each sub-
directory. For example, the page “ideas” would contain an
auto-generated index of the subdirectory website/ideas.

Mounting a remote wiki as a filesystem
I have used WikiGateway in conjunction with davfs[10] to
mount a remote wiki running OddMuse. I was able to use
the standard operating command ls to list the pages on
the wiki, and to read and write the wiki pages with text
editors as if they were files on my hard drive. When I oper-
ated on the file, davfs translated the operation into a Web-
DAV request which was sent to a WebDAV gateway server
which is part of the WikiGateway project. The WebDAV
gateway server translated the incoming DAV request into
an HTTP request that the OddMuse server could under-
stand. So, even though davfs didn’t know about wikis and
OddMuse doesn’t speak WebDAV, and even though I did
not have administrative access to the remote server running
OddMuse, WikiGateway enabled me to use davfs.

6. FUTURE WORK
6.1 Support for more wiki engines
7Some users have requested a feature where the IP addresses
of those who generated the spam are remembered, and the
page is then reverted to the latest spam-free version edited
by a non-spammer. A similar bot that already has this
feature is WikiMinion [32].

Although a major goal of WikiGateway is to achieve porta-
bility across many different wiki engines, in fact currently
there are only drivers for four types of wiki engines (Use-
Mod8, OddMuse, MediaWiki, and MoinMoin). I felt that
building an extensible framework which made it easy to
write drivers, which had unit tests, and which provided a
way to let clients use protocols such as DAV or Atom was a
more pressing need than initially supporting a large number
of wiki engines.

However, now that the framework is in place, I plan to add
at least two more drivers by October 2005, and many more
in the long run.

6.2 Wiki page interchange
Because WikiGateway is a central collection of algorithms
for reading and writing to various types of wiki engines, it
is also a natural place to collect algorithms for converting
wiki markup between wiki engines. This would allow Wiki-
Gateway to offer a “copy wiki page” command that could
copy a wiki page from one wiki to another and automatically
convert markup styles as necessary.

There is no consensus on how best to do this. One could
imagine writing converters for each pair of wiki engines, or
one could imagine converting all markup types to a single
“canonical” markup, and then converting from the canoni-
cal markup to the target markup type. One advantage of
using a canonical markup type is that only O(n) conversion
algorithms need to be written, as opposed to O(n2) algo-
rithms if each pair of wiki engines must have a specialized
conversion algorithm (where n is the number of supported
wiki engines) [4]. Some have suggested that this canonical
standard should be XHTML (which is generated by most
wikis already), and that the conversion algorithms should
be written as XSLTs [18, 3].

WikiGateway could accommodate either strategy, or a mix-
ture of both. Since each driver is independent of the others,
different wiki engines could have different conversion rou-
tines for their markup. Depending on the particular source
and target style, a conversion algorithm could be either “di-
rect” or make use of a “canonical” intermediary.

However, because of the object-oriented structure of the core
Python module, functions could also be made available to
all drivers which encapsulate common motifs such as XSLT
processing.

6.3 Auto-detection of wiki engine type
Currently, a client using most WikiGateway components
must tell WikiGateway what sort of software is running on
the wiki server. This is inconvenient. It should be possible
for WikiGateway to automatically determine what type of
wiki server it is dealing with by sending it a series of test
requests and analyzing the responses.

For many wiki engines it would probably be sufficient to
analyze the HTML of the front page of the wiki. For some,
the HTML of the edit form might be needed.

8There are three drivers for UseMod, for versions .91, .92,
and 1.0.

UseMod server

Modified MoinMoin
server

UI

page
database

UI

WikiGateway
interface
to remote

UseMod server

user
who likes
MoinMoin

user
who likes
UseMod

Figure 7: An example of the WikiWindow concept.
A user interacts with a modified MoinMoin server;
the page database is stored on a UseMod server.
Red lines indicate the communications paths involv-
ing the red user. Blue lines indicate the communi-
cations paths involving the blue user. The dotted
line represents a WikiGateway-based interface be-
tween the modified MoinMoin server and the Use-
Mod server.

6.4 More demo applications
WikiWindow
WikiWindow is the name for a feature that would allow mul-
tiple wiki engines to be used with a single wiki. For example,
MeatballWiki runs the UseMod wiki engine. However, with
WikiWindow, a user could opt to view and edit Meatball-
Wiki through a MoinMoin server. This would allow users to
choose which type of wiki engine software they prefer.

How would this be done? MeatballWiki would be hosted
on a standard UseMod wiki engine. On another server,
someone would run a specially modified MoinMoin engine.
The MoinMoin engine would be modified so that, instead of
querying its own database for the wiki page source, it would
instead query the real MeatballWiki UseMod server, using
WikiGateway (see Figure 7). The UseMod server would
return the rendered page text, and the MoinMoin engine
would then add its own header and footer, etc.

Wiki mode for Emacs
Alex Schroeder, David Hansen, Pierre Gaston, and Deepak
Goel have written an Emacs mode especially for browsing
and editing wikis [34]. It is compatible with OddMuse and
UseMod wikis. By replacing the UseMod/OddMuse-specific
code with calls to WikiGateway, I will make this Emacs
mode compatible with all WikiGateway-supported wikis.

Wiki client
At some point, I will implement a very simple wiki client to
demonstrate the potential that WikiGateway holds for wiki
clients.

Unified, filtered RecentChanges
Users who regularly read a couple of busy wikis have a lot to
keep up with. A tool which aggregates changes from many
wikis and which allows the user to apply flexible, powerful
filtering criteria could allow a busy user to better focus her
or his time.

WikiSync

It would be useful to have a tool that allows one to “check-
out” a copy of a wiki for offline editing, to edit the wiki
pages as text files using standard word processing appli-
cations, and then to “resync” the local database with the
online wiki [40][6]. This would be useful not only for peo-
ple actually browsing offline, such as commuters, but also to
people who would like to refactor a few related pages with
a standard word processor.

A tool like this already exists, but only for Mediawiki [20].

6.5 More unit tests
Presently, there are unit tests for the most fundamental
WikiGateway components, but not for all components (such
as the demo applications). Eventually, all components will
have unit tests.

6.6 Final goal: obsolete WikiGateway
Ideally, wiki engines themselves would provide a way for
clients to access them. If all wiki engines supported WikiR-
PCInterface, for example, there would be no need for Wiki-
Gateway. I would prefer for something like this to happen
rather than everyone relying upon WikiGateway.

This ideal situation is not likely to come about by itself,
however. Here are some of the reasons that wiki servers are
not about to support standard protocols.

First, there are not many clients yet. But no one will write
clients until there are wiki servers for these clients to access.
This is a chicken-or-the-egg problem.

Second, even if there were clients, many wiki developers
would prefer to focus their effort on other features. Wiki
developers do not want to add extra features they aren’t
excited about and that may not even be used; that’s bad
FeatureKarma[25].

Third, there are many competing protocols. DAV is a web
standard, but is thought to be too heavyweight, and does not
support versioning. WebDAV+DeltaV supports versioning,
but is more heavyweight, and has almost no implementa-
tions. Atom is simpler than DAV but not yet as widespread
or standardized, and does not support versioning. WikiR-
PCInterface is lightweight and supports versioning, but is
not widely known, is not RESTful, and is not used for any-
thing besides wikis (hindering interoperability). Even if we
were to convince all wiki developers to go out and implement
a protocol immediately, it is not clear which one should be
used.

WikiGateway is an interim solution. First, WikiGateway
solves the chicken-or-the-egg problem by allowing clients to
access wiki servers today, not just tomorrow. Second, Wiki-
Gateway does not require any code to be added to wiki en-
gines. Third, WikiGateway supports all three of the above-
mentioned protocols, allowing us to defer the decision.

In addition, WikiGateway may make it easier for the nec-
essary protocols to evolve by providing a de-facto reference
implementation.

Therefore, WikiGateway makes it more likely that the ideal

scenario, in which wiki engines support programmatic access
directly, will happen.

7. CONCLUSIONS
WikiGateway is a library which allows software to access
wiki servers. The method of access may be a client-side tool
(Perl, Python, or command-line) or a standard protocol such
as DAV, Atom, or WikiRPCInterface. It is relatively easy
for a developers to write a driver for WikiGateway to make
it compatible with a particular wiki engine.

WikiGateway will make wiki servers more interoperable with
other software, including other wiki servers, wiki client soft-
ware, and wiki-agnostic software using generic protocols such
as WebDAV.

WikiGateway makes it possible to add new features on client-
side tools without modifying the wiki server. Since these
tools will be compatible with many different wiki servers,
it will be possible to overcome the fragmentation of the de-
veloper community into hundreds of different wiki engines.
This will accelerate the development of wiki technology.

8. ACKNOWLEDGMENTS
L. M. Orchard and David Jacoby contributed the code on
which the original Perl version of WikiGateway was based.

Isolani contributed the code upon which the Atom gate-
way server was based. Alex Schroeder suggested building
the Atom gateway server. Christian Scholz wrote Python
DAVserver, and Benjamin Trott wrote XML::Atom::Server.

Although I have heard that WikiRPCInterface started on
JSPWiki, I don’t know who originated it, but thank you to
them.

Although the documentation is ambiguous, I believe that
davfs is written by SungHun Kim and Ric Castillo.

Lion Kimbro helped with testing.

David Cary, Alex Schroeder, Mark Dilley, some anonymous
gnomes9, and especially Dana Dahlstrom helped to edit this
paper.

Thanks also to the members of MeatballWiki and Commu-
nityWiki for many helpful discussions.

9. REFERENCES
[1] M. Altheim. InterWikiMarkupLanguage (IWML): A

Common Interchange Syntax for Wiki.
http://www.altheim.com/specs/iwml/. Viewed on
April 26, 2005.

[2] Atom wiki.
http://www.intertwingly.net/wiki/pie/FrontPage.

[3] D. Ayers. InterWiki Decoder.
http://dannyayers.com/archives/002321.html.
Viewed on April 26, 2005.

9also known as reviewers

http://www.altheim.com/specs/iwml/
http://www.intertwingly.net/wiki/pie/FrontPage
http://dannyayers.com/archives/002321.html

[4] D. Ayers. RE: Re: XHTML.
http://dannyayers.com/archives/002321.html, 02
2004. (email).

[5] CommunityWiki. BannedContentDiscussion. http:
//communitywiki.org/BannedContentDiscussion.
Viewed on April 21, 2005.

[6] CommunityWiki. OfflineWiki.
http://communitywiki.org/OfflineWiki. Viewed on
August 29, 2005.

[7] CommunityWiki. PlanBWikiModules.
http://communitywiki.org/PlanBWikiModules.
Viewed on April 26, 2005.

[8] CommunityWiki. TooManyWikiEngines.
http://communitywiki.org/TooManyWikiEngines.
Viewed on April 21, 2005.

[9] http://cpan.org.

[10] http://dav.sourceforge.net/.

[11] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and
D. Jensen. HTTP Extensions for Distributed
Authoring – WEBDAV.
http://www.webdav.org/specs/rfc2518.html, Feb.
1999.

[12] J. Gregorio. The AtomAPI. http://bitworking.org/
projects/atom/draft-gregorio-09.html, Dec. 2003.
Old draft of Atom API.

[13] J. Gregorio. The AtomAPI: Publishing Web Content
with XML and HTTP. In XML 2004 Proceedings.
IDEAlliance, 2004.

[14] J. Gregorio and R. Sayre. The Atom Publishing
Protocol. http://www.ietf.org/internet-drafts/
draft-ietf-atompub-protocol-03.txt, Mar. 2005.
Work in progress.

[15] R. F. Halvorsen. TheStateOfWiki.
http://heim.ifi.uio.no/~aurilla/web/rune.pdf.
Viewed on April 21, 2005.

[16] interwiki-discuss mailing list.
http://lists.sourceforge.net/lists/listinfo/

interwiki-discuss.

[17] InterWikiWiki. WikiPageInterchange. interwiki.
wiki.taoriver.net/moin.cgi/WikiPageInterchange.
Currently down until administrator has time to
upgrade to new version of MoinMoin. See
http://web.archive.org/web/20041012084649/

http://interwiki.wiki.taoriver.net/moin.cgi/

WikiPageInterchange in the meantime.

[18] InterWikiWiki. XhtmlInterWikiMarkupStandard.
interwiki.wiki.taoriver.net/moin.cgi/

XhtmlInterWikiMarkupStandard. Currently down
until administrator has time to upgrade to new
version of MoinMoin. See http://web.archive.org/

web/20041009232512/interwiki.wiki.taoriver.

net/moin.cgi/XhtmlInterWikiMarkupStandard in the
meantime.

[19] D. Jacoby. UnifiedRecentChanges. http://csociety.
ecn.purdue.edu/~jacoby/UnifiedRecentChanges/.
Can parse RecentChanges from UseMod and fetch
them from PhpWiki.

[20] M. Jaroski. WWW::Mediawiki (and wix). Provides an
interface to Mediawiki, and builds rudimentary
RCS-like functionality on top of it.

[21] E. J. W. Jr. and Y. Y. Goland. WebDAV: A network
protocol for remote collaborative authoring on the
Web. In ECSCW, pages 291–, 1999.

[22] JspWiki. WikiRPCInterface. http://www.jspwiki.
org/Wiki.jsp?page=WikiRPCInterface. Specification.
WikiRPCInterface has been implemented for
OpenWiki, TWiki, UseModWiki, MoinMoin, and
PhpWiki. Viewed on April 21, 2005.

[23] JspWiki. WikiRPCInterface 2. http://www.jspwiki.
org/Wiki.jsp?page=WikiRPCInterface2.
Specification. Viewed on April 21, 2005.

[24] MeatballWiki. CommonContext. http:
//www.usemod.com/cgi-bin/mb.pl?CommonContext.
Viewed on April 21, 2005.

[25] MeatballWiki. FeatureKarma. http:
//www.usemod.com/cgi-bin/mb.pl?FeatureKarma.
Viewed on Aug 15, 2005.

[26] MeatballWiki. PricklyHedge. http:
//www.usemod.com/cgi-bin/mb.pl?PricklyHedge.
Viewed on April 21, 2005.

[27] MeatballWiki. WikiInterchangeFormat. http://www.
usemod.com/cgi-bin/mb.pl?WikiInterchangeFormat.
Viewed on April 26, 2005.

[28] MeatballWiki. WikiRefactoringBrowser.
http://www.usemod.com/cgi-bin/mb.pl?

WikiRefactoringBrowser. Viewed on April 21, 2005.

[29] MeatballWiki. WikiXmlDtd.
http://www.usemod.com/cgi-bin/mb.pl?WikiXmlDtd.
Viewed on April 26, 2005.

[30] OddmuseWiki. BannedContent. http:
//www.oddmuse.org/cgi-bin/wiki?BannedContent.
Viewed on April 21, 2005.

[31] Pywikipediabot.
http://pywikipediabot.sourceforge.net/. Provides
an interface to Mediawiki, along with lots of other
functions useful for writing Wikipedia bots.

[32] RichardP. WikiMinion. http://www.nooranch.com/
synaesmedia/wiki/wiki.cgi?WikiMinion. Spam
cleaning bot. Interfaces with MoinMoin, OddMuse,
OpenWiki, PurpleWiki, and UseMod.

[33] J. Schaefer and A. Schroeder. Automatic Posting and
Uploading scripts for OddMuse.
http://www.oddmuse.org/cgi-bin/oddmuse/

Automatic_Posting_and_Uploading. A series of
scripts to communicate with OddMuse.

http://dannyayers.com/archives/002321.html
http://communitywiki.org/BannedContentDiscussion
http://communitywiki.org/BannedContentDiscussion
http://communitywiki.org/OfflineWiki
http://communitywiki.org/PlanBWikiModules
http://communitywiki.org/TooManyWikiEngines
http://cpan.org
http://dav.sourceforge.net/
http://www.webdav.org/specs/rfc2518.html
http://bitworking.org/projects/atom/draft-gregorio-09.html
http://bitworking.org/projects/atom/draft-gregorio-09.html
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-atompub-protocol-03.txt
http://heim.ifi.uio.no/%7eaurilla/web/rune.pdf
http://lists.sourceforge.net/lists/listinfo/interwiki-discuss
http://lists.sourceforge.net/lists/listinfo/interwiki-discuss
../../proceedings/interwiki.wiki.taoriver.net/moin.cgi/WikiPageInterchange
../../proceedings/interwiki.wiki.taoriver.net/moin.cgi/WikiPageInterchange
http://web.archive.org/web/20041012084649/http://interwiki.wiki.taoriver.net/moin.cgi/WikiPageInterchange
http://web.archive.org/web/20041012084649/http://interwiki.wiki.taoriver.net/moin.cgi/WikiPageInterchange
http://web.archive.org/web/20041012084649/http://interwiki.wiki.taoriver.net/moin.cgi/WikiPageInterchange
../../proceedings/interwiki.wiki.taoriver.net/moin.cgi/XhtmlInterWikiMarkupStandard
../../proceedings/interwiki.wiki.taoriver.net/moin.cgi/XhtmlInterWikiMarkupStandard
http://web.archive.org/web/20041009232512/interwiki.wiki.taoriver.net/moin.cgi/XhtmlInterWikiMarkupStandard
http://web.archive.org/web/20041009232512/interwiki.wiki.taoriver.net/moin.cgi/XhtmlInterWikiMarkupStandard
http://web.archive.org/web/20041009232512/interwiki.wiki.taoriver.net/moin.cgi/XhtmlInterWikiMarkupStandard
http://csociety.ecn.purdue.edu/%7ejacoby/UnifiedRecentChanges/
http://csociety.ecn.purdue.edu/%7ejacoby/UnifiedRecentChanges/
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface2
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface2
http://www.usemod.com/cgi-bin/mb.pl?CommonContext
http://www.usemod.com/cgi-bin/mb.pl?CommonContext
http://www.usemod.com/cgi-bin/mb.pl?FeatureKarma
http://www.usemod.com/cgi-bin/mb.pl?FeatureKarma
http://www.usemod.com/cgi-bin/mb.pl?PricklyHedge
http://www.usemod.com/cgi-bin/mb.pl?PricklyHedge
http://www.usemod.com/cgi-bin/mb.pl?WikiInterchangeFormat
http://www.usemod.com/cgi-bin/mb.pl?WikiInterchangeFormat
http://www.usemod.com/cgi-bin/mb.pl?WikiRefactoringBrowser
http://www.usemod.com/cgi-bin/mb.pl?WikiRefactoringBrowser
http://www.usemod.com/cgi-bin/mb.pl?WikiXmlDtd
http://www.oddmuse.org/cgi-bin/wiki?BannedContent
http://www.oddmuse.org/cgi-bin/wiki?BannedContent
http://pywikipediabot.sourceforge.net/
http://www.nooranch.com/synaesmedia/wiki/wiki.cgi?WikiMinion
http://www.nooranch.com/synaesmedia/wiki/wiki.cgi?WikiMinion
http://www.oddmuse.org/cgi-bin/oddmuse/Automatic_Posting_and_Uploading
http://www.oddmuse.org/cgi-bin/oddmuse/Automatic_Posting_and_Uploading

[34] A. Schroeder, D. Hansen, P. Gaston, and D. Goel.
SimpleWikiEditMode. http://www.emacswiki.org/
cgi-bin/wiki/SimpleWikiEditMode. Emacs mode for
browsing and editing UseMod and OddMuse wikis.

[35] E. Summers. WWW::Wikipedia. Perl module which
provides an interface to Wikipedia.

[36] TwikiWiki. RenderOnceReadMostly. http://twiki.
org/cgi-bin/view/Codev/RenderOnceReadMostly.
Viewed on April 26, 2005.

[37] http://www.webdav.org.

[38] WikiWiki. WikiEnginePopularity.
http://c2.com/cgi/wiki?WikiEnginePopularity.
Viewed on April 21, 2005.

[39] WikiWiki. WikiInterchangeFormat.
http://c2.com/cgi/wiki?WikiInterchangeFormat.
Viewed on April 26, 2005.

[40] WikiWiki. WikiSync.
http://c2.com/cgi/wiki?WikiSync. Viewed on April
27, 2005.

[41] WorldWideWiki. PopularWikis.
http://www.worldwidewiki.net/wiki/PopularWikis.
Viewed on April 21, 2005.

http://www.emacswiki.org/cgi-bin/wiki/SimpleWikiEditMode
http://www.emacswiki.org/cgi-bin/wiki/SimpleWikiEditMode
http://twiki.org/cgi-bin/view/Codev/RenderOnceReadMostly
http://twiki.org/cgi-bin/view/Codev/RenderOnceReadMostly
http://www.webdav.org
http://c2.com/cgi/wiki?WikiEnginePopularity
http://c2.com/cgi/wiki?WikiInterchangeFormat
http://c2.com/cgi/wiki?WikiSync
http://www.worldwidewiki.net/wiki/PopularWikis

APPENDIX
A. Demonstration of the Python WikiGateway module
For readability, longer responses were truncated, blank lines added, and a subset of a longer session was selected for inclusion.

Python 2.3.4c1 (#2, May 13 2004, 21:46:36)

[GCC 3.3.3 (Debian 20040429)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import WikiGateway

>>> print WikiGateway.getPage(r’http://interwiki.sourceforge.net/cgi-bin/wiki.pl’, ’oddmuse1’, ’SandBox’)

This is a test of <nowiki>WikiGateway</nowiki>. Test 2.

>>> wg = WikiGateway.WikiGateway(’http://interwiki.sourceforge.net/cgi-bin/wiki.pl’, ’oddmuse1’)

>>> wg.getAllPages()

[’AboutInterWikiSoftware’, ’AdvantagesOfAGateway’, ’AndrewGray’, ’AtomGateway’, ’AtomServerModule’, ...(truncated)...]

>>> wg.getRecentChanges(’April 11, 2005’)

[{’comment’: u’Automated update of spam blacklist’, ’name’: u’BannedContent’, ’importance’: u’major’,

’lastModified’: u’2005-04-19T12:11:52+00:00’, ’version’: u’57’}, {’comment’: u’revert to revision 39’,

’name’: u’SpamClean’, ’importance’: u’major’, ’lastModified’: u’2005-04-17T08:00:54+00:00’,

’version’: u’41’}, {’name’: u’SandBox’, ’importance’: u’major’, ’lastModified’: u’2005-04-16T17:58:31+00:00’,

’version’: u’439’}, {’name’: u’WikiSandBox’, ’importance’: u’major’, ’lastModified’: u’2005-04-16T10:31:32+00:00’,

’version’: u’1’}]

>>> wg.putPage(’SandBox’, ’py wg test’)

>>> wg.getPageInfo(’SandBox’)

{’date’: <DateTime object for ’2005-04-21 16:19:00.00’ at 407596b0>, ’comment’: ’’, ’version’: 440,

’author’: ’user-10cmeae.cable.mindspring.com’}

>>> wg.getPageInfoVersion(’SandBox’, 429)

{’date’: <DateTime object for ’2005-04-11 15:03:00.00’ at 4077c4b8>, ’comment’: ’’, ...(truncated)...}

>>> wg.getPageHistoryInfo(’SandBox’){416: {’date’: <DateTime object for ’2005-04-05 16:25:00.00’ at 4077c7c8>,

’comment’: ’’, ’version’: 416, ’author’: ’user-10cmeae.cable.mindspring.com’}, 417: {’date’:

<DateTime object for ’2005-04-10 04:46:00.00’ at 4077c790>, ’comment’: ’’, ’version’: 417,

’author’: ’user-10cmeae.cable.mindspring.com’}, ...(truncated)...}

>>> wg.getPageVersion(’SandBox’,439)

’This is a test of <nowiki>WikiGateway</nowiki>. Test 2.\n’

>>> wg.getPageHTMLVersion(’SandBox’,439)

’<p>This is a test of WikiGateway. Test 2.</p>’

B. Sample invocations of the command-line wiki client “wikiclient”
InterWiki prefixes are resolved using a file “.intermap” in the user’s home directory.

wikiclient --type=usemod1 read MeatBall:SandBox

wikiclient --type=usemod1 read http://www.usemod.com/cgi-bin/mb.pl:SandBox

wikiclient --type=usemod1 write http://interwiki.sourceforge.net/cgi-bin/wiki.pl:SandBox --summary="just a test"

<the text to be written is read from STDIN>

wikiclient --type=usemod1 rc MeatBall

wikiclient --type=usemod1 rc:11 MeatBall

wikiclient --type=usemod1 allpages http://interwiki.sourceforge.net/cgi-bin/wiki.pl

wikiclient --type=usemod1 info MeatBall:SandBox

wikiclient --type=usemod1 info MeatBall:SandBox --version=2384

wikiclient --type=usemod1 info MeatBall:SandBox --version=last

	Introduction
	Motivations
	A central collection of screen-scraping code
	Interoperability with standard protocols
	Wiki page interchange
	Client-side tool development
	Concrete examples of what WikiGateway can be used for

	Arguments against WikiGateway
	Security
	Loss of central control over UI

	Architecture of WikiGateway
	The Python module
	The Perl module
	The command-line client
	Gateway servers
	Unit tests

	Demo applications
	Future work
	Support for more wiki engines
	Wiki page interchange
	Auto-detection of wiki engine type
	More demo applications
	More unit tests
	Final goal: obsolete WikiGateway

	Conclusions
	Acknowledgments
	References

