
SmallWiki — A Meta-Described
Collaborative Content Management System

Stéphane Ducasse
Software Composition Group

University of Bern –
Switzerland

ducasse@iam.unibe.ch

Lukas Renggli
netstyle.ch GmbH
Bern – Switzerland

renggli@netstyle.ch

Roel Wuyts
DeComp

Université Libre de Bruxelles –
Belgium

roel.wuyts@ulb.ac.be

ABSTRACT
Wikis are often implemented using string-based approaches to parse
and generate their pages. While such approaches work well for
simple wikis, they hamper the customization and adaptability of
wikis to the variety of end-users when more sophisticated needs are
required (i.e., different output formats, user-interfaces, wiki man-
agement, security policies, ...). In this paper we present SmallWiki,
the second version of a fully object-oriented implementation of a
wiki. SmallWiki is implemented with objects from the top to the
bottom and it can be customized easily to accommodate new needs.
In addition, SmallWiki is based on a powerful meta-description
called Magritte that allows one to create user-interface elements
declaratively.

Categories and Subject Descriptors
D.1.5 [Programming Languages]: Object-oriented Programming;
D.2.10 [Software Engineering]: Design; D.2.m [Software Engi-
neering]: Miscellaneous

General Terms
Languages, Design

Keywords
Object-Oriented Programming, Meta-modeling, Design and Imple-
mentation, Seaside, Smalltalk

1. INTRODUCTION
A Wiki or wiki (pronounced [wiki:], [wi:ki:] or [vi:ki:]) is a web-
site that allows users to add content, as on an Internet forum, but
also allows anyone to edit the content. ”Wiki” also refers to the col-
laborative software used to create such a website. [http://en.wikipe-
dia.org/wiki/Wiki]

While wikis offer a significant degree of freedom to their users to
edit and share contents fast [7], the underlying wiki implemen-
tations are often less flexible and powerful than the model they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’05, October 16-18, San Diego, CA, U.S.A.
Copyright 2005 ACM 1-59593-111-2/05/0010...$5.00.

promote. Wikis are mostly implemented using string-based ap-
proaches (i.e., regular expressions) to parse and generate their pa-
ges. While such approaches work well for straightforward wikis,
they hamper the customization and adaptability of wikis to the va-
riety of end-users that require more sophisticated needs (i.e., differ-
ent output formats, user-interfaces, security policies, ...).

One might think that advanced wikis are not really necessary, and
hence that simple wiki implementations that only allow users to
change the contents of pages suffice. Experience shows that this is
not the case:

Input and Output. Most wikis provide users with a simple wiki
syntax to create rich XHTML pages, however they hamper
the possibility to use other input and output formats. This is
the reason why SmallWiki is storing the contents of a page
within an abstract document tree that can be traversed to emit
different output formats such as XHTML or LATEX. Wikis
based on strings require to duplicate the parsing functional-
ity for every new output format. For complex wikis, such as
WikiPedia [11], there are so many slow regular expressions
applied to the input, that they are forced to implement sophis-
ticated caching algorithms for different output and search
formats.

User Interface. An experiment using wikis in classrooms showed
that children and teachers require different user interfaces
and functionalities [2]. Students should have a simpler user-
interface compared to the teachers, that should be able to lock
all the pages of her students at once.

Management. Another example is the maintenance of wikis that
typically requires sophisticated functionalities such as: search-
ing for all the pages containing more than 10 external links
or finding all pages that were edited on a certain date and
that have more than twenty uploaded pictures. Since such
activities are typically done by end-users themselves, they
should be supported by the wiki itself (such as not to break
the metaphor of the wiki medium).

Customizability. The metaphor of a wiki should not stop at the
level of editing pages. Therefore we need customizable wikis
with an underlying implementation that supports the defini-
tion of new wiki components, and not only of changing con-
tents of pages. SmallWiki allows one to customize its look
using meta-pages that can be edited such as any other page
and to include active components within the wiki to enhance
the user experience.

This paper presents SmallWiki 2, a second version of a fully object-
oriented implementation of a wiki. SmallWiki is written with ob-
jects from the top to the bottom and it can be customized easily
to accommodate new needs. In addition, SmallWiki is based on a
powerful meta-description, named Magritte, that allows one to cre-
ate web user-interface elements declaratively. It is worth to men-
tion that the design decisions taken during the first implementation
of SmallWiki have been totally revisited during the second imple-
mentation.

The contributions of the paper are:

• the description of the architecture and the design decisions of
the implementation of SmallWiki and the lessons we learned
in the process,

• the description of Magritte the meta-model and framework
we developed and on which SmallWiki is based.

Section 2 presents some SmallWiki instances. Section 3 presents
the architecture and design of SmallWiki. Section 4 demonstrates
how the current model can be extended. Section 5 presents Ma-
gritte, a meta-model to describe all the wiki elements that is the
key to much of the advanced functionality offered by SmallWiki.
Section 6 lists the lessons we learned by implementing the second
version of SmallWiki, as presented in this paper.

2. SMALLWIKI IN ACTION

He
ad

in
g

Co
m

m
an

d
Li

st
Na

vi
ga

tio
n

Tr
ee

In
de

x
Pa

th
Se

ar
ch

Pa
ge

 C
on

te
nt

Figure 1: A page composed out of several components.

SmallWiki structures its layout out of different components: head-
ing, command list, navigation tree, table of contents, search inter-
face, page content, etc. For example in Figure 1 the page contains
the header on top and the document in the center; on the left there
is a list of possible commands and a tree view of the wiki; on the
right a table of contents widget, the current navigation path and
a small search box. Figure 2 shows another instance of SmallWiki
where different components are used: a header, a list of commands,
a login box and the document. Note that SmallWiki’s look is based
on Cascading Style Sheets (CSS), allowing each component to be
skinned differently via its CSS specification.

Figure 3 shows a calendar: a more elaborated component that was
developed by students following a software engineering course.
Such a component shows that SmallWiki is at the border between a
wiki with all the collaborative aspects of co-editing documents and
content management systems. We see SmallWiki as a platform for
building collaborative web-based applications.

Figure 2: www.seaside.st shows another web site using Small-
Wiki.

Figure 3: A SmallWiki advanced component: a calendar.

3. ARCHITECTURE
SmallWiki’s design has matured over the years [9]. During this
process we tried to simplify it while making it more flexible. Small-
Wiki has been implemented and re-implemented from scratch by
the second author in Squeak, an open-source Smalltalk [5]. We
present here the key aspects of the implementation and architecture
of SmallWiki 2.

3.1 Separation of Concerns
Web application development is difficult when having to deal with
the shortcomings of the HTTP protocol as the right abstractions are
missing [3]. Therefore we decided to use Seaside [10] as a frame-
work of choice for the default view in SmallWiki. This approach
greatly enhances the development of complex widgets. Since the
user interface is built from Seaside components that automatically
keep their state along a user session, it is now simple to implement,
for example, a tree-widget that is displayed on every page and re-
members its expanded nodes.

Since Seaside offers a proper separation between the model and
the view, SmallWiki takes full advantage of it. As an example, it

is possible to use different non web-based view using the Omni-
Browser [8] framework as shown in Figure 4; the same wiki pages
can be browsed and altered via the OmniBrowser interface or via a
web-browser.

Figure 4: OmniBrowser view on a SmallWiki model.

3.2 Pages and Files
Unlike most other wikis, in SmallWiki structures can be nested ar-
bitrarily into each other. The SmallWiki core implementation pro-
vides two basic structure types: pages and files, that build the main
entities for any wiki. A page is a structure containing a document
(see Section 3.3) that can be edited using the wiki syntax. A file is
a resource, such as an Image-, Video-, Sound, or PDF-file, that has
been uploaded. Other page types might be available if extensions
to the base package have been loaded.

Links to other structures can be written either as absolute (e.g., */In-
formation/Copyright*) or relative (e.g., *../Copyright*) paths. People
being unfamiliar with this concept will create a link without any
path elements and this will reference a child of the current page,
what in most cases is desired anyway.

In addition the user can embed any linked object into the contain-
ing page, where the target can be another page or file that can be
embedded into HTML. Note that embedding or nesting elements
inside each other can lead to recursion which when not treated cor-
rectly would lead to infinite XHTML streams. SmallWiki detects
possible recursion problems and in case of recursion just uses link-
anchors instead of embedding. Element embedding is transparent
to the user in the sense that it is expressed using the familiar wiki
syntax e.g., a page with two columns is achieved by creating a table
embedding two different pages each into one column of the table,
as we see in Figure 1. This greatly enhances the possibility to build
complex layouts without bloating the wiki syntax with new features
or using XHTML tags.

3.3 Document Objects
Every page consists of a title and a document representing its con-
tents. The document is a Composite and includes all the basic ele-
ments to represent a text such as paragraph, ordered and unordered
list, table, pre-formatted text, links, etc as shown in Figure 5.

When the user saves a text using the wiki syntax, it is then parsed
using a parser built by the compiler-compiler SmaCC [1], and only
the document tree is stored within the page. A visitor walking over

Document
Item

Document
Group

Document

Link

Paragraph

Preformatted

Header

List

Table

Horizontal
Rule Text

Smiley

Ordered

Unordered

Internal

External

1

*children
Page

Figure 5: The document hierarchy: a simple composite.

this tree is able to transform this composite document back into an
identical string that the user can modify again. Some nice features,
such as the possibility to detect smilies, align table cells and add
links everywhere, even within headings, greatly enhances the uni-
formity of the wiki input. Moreover, SmallWiki provides sophisti-
cated in-place page editing facilities: unlike other wikis, where the
user is forced to edit a page as a whole entity in one big text-area,
in SmallWiki one can choose just to edit a specific paragraph that
is then replaced within its context of the document with a smaller
edit box; saving that paragraph parses the text and merges it back
into the current document tree.

3.4 Visitors
The wiki structure i.e., the page itself or an uploaded file is refined
from WikiObject the root of the wiki elements that can be walked
through using a Visitor. Having a full object-oriented representa-
tion of a document enables a lot of powerful features in SmallWiki
e.g., implementing a different output format is just a matter of writ-
ing a new visitor class and searching for broken links means to
traverse and ask all the external link objects if they point to a valid
internet resource, as we will demonstrate in Section 4.

v :Visitor

visit: p

p :Page s :Security c :Children

visit: s

acceptDecorated: p

acceptDecorated: s

visitSecurity: s

visitPage: p
acceptDecorated: c

visitChildren: c

priority = -1 priority = +1priority = 0

accept: s

accept: s

accept: s

Figure 6: Visitor interacting with decorated objects.

In fact, a Page or a File is a DecoratedObject, an object using a
Chain of Responsibility for certain aspects of its behavior, such as
security or children. The decorations are tightly integrated into the
visitors so that they can easily interact with the underlying model.
Decorations contain a priority that is used by the visitor to deter-

mine the order in which the decorations are processed. The deco-
rated object has a priority of 0. To ensure that it is processed first,
the security decoration is assigned a negative priority. The children
decoration has a positive priority, since it should be visited after the
object containing the children, as seen in Figure 6.

3.5 Context and Commands
Most wikis keep all their application state as strings in the URL, its
query parameters, in HTTP header fields and in associated session-
cookies, exactly the way like most of todays web applications do.
Using Seaside allows us to propose a much cleaner solution. Sea-
side provides a nice abstraction over this low-level protocol and we
are now able to keep all our state within the application components
themselves as proper objects. It is therefore not necessary to man-
ually serialize and de-serialize our objects as strings. However, we
still need a central place to remember and to change the context in
which the user is browsing the wiki, such as the currently browsed
structure, the running command and the user logged in.

SmallWiki introduces an immutable Context object, containing all
the necessary information about the user browsing the site, all its
associated security policies, the currently browsed page and the
command being used with. Since every part of SmallWiki can mod-
ify the current context, say to navigate to a different structure, we
must make sure that we do not loose the old context, since we might
still need the original one for logging the changes with the persis-
tency framework. Therefore sending the message goto:command:
to a context returns a modified copy of the receiver, it is then the
responsibility of the developer to make this context the current one.
In Seaside the context is held in the top-level component of the
wiki and can be requested or changed by raising a notification. We
didn’t want to use a global session object to remember the context,
since we would like to keep the possibility to embed SmallWiki
into an existing Seaside application that presumably already has its
own session class. For example, in the OmniBrowser view (see
Figure 4), the current context is kept within the browser model.

Calling the method execute on a command instance executes this
command within a critical section, so that concurrent modifications
of the domain model don’t interfere with each other. In addition
this ensures the modifications to be valid before processing and
that they are logged in the persistency layer after execution. As an
example let’s have a look at the implementation of the command
to add a new page to the wiki: doExecute is a hook method that
is called from within the critical section in execute. The first line
actually adds the newly created child to the current page and re-
members the child within a temporary variable structure. It then
tells the current context by sending goto:command: to go to in edit
mode on the newly created child. However this new context won’t
be activated right away and it is remembered as the answer of the
add command. In the meantime the SmallWiki persistency frame-
work is able to log the executed command together with the old
context, so that it can be undone or replayed if necessary.

AddCommand � doExecute
| structure |
self structure children add: (structure := self newChild).
self answer: (self context

goto: structure
command: structure editCommand).

The command hierarchy gives a clean interface to modify the do-
main model of SmallWiki. Actually every modification (or write

access) to the model goes through a command, so that it can be
logged and eventually undone at a later point in time. As we will
see in Section 5.2.2, having an initial state of the model and a list
of logged commands with their associated contexts allows the im-
plementation of a prevalence or changeset-like persistency mecha-
nism, in which each change is stored with a time-stamp. Hence, it
is not even necessary to keep the old versions of a page explicitly
in the domain model, because they can be easily obtained by going
back through the history of commands selecting all edit-commands
on a particular page.

3.6 Environment
SmallWiki unifies the look of the wiki-site with the wiki metaphor
and allows one to define the look of the page using the wiki syntax
itself, thus people only have to learn one concept that can be used
seamlessly in different areas. Anywhere within the wiki one is able
to define a special page called environment that is invisible to the
casual user and that defines the look of a portion of the wiki. An
environment is shared between all the children of the same page,
unless a new environment is defined that replaces the previous one.
Since the environment is a wiki-page, it can be edited and modified
like any other page.

The default environment page creating the standard look of Small-
Wiki only consists of the following small piece of wiki text.

+Header+
| +Commands+
 +Tree+ | +Contents+
SmallWiki 2 — Empowered by Seaside

The first line with +Header+ embeds the header widget that allows
one to create an internal link that should be embedded into the tar-
get page. Even though the Header structure could be yet another
wiki page, in this particular case we are using a Seaside component
to draw and provide the necessary functionality. The next line cre-
ates a table containing the command and tree widget in a column
on the left and the actual contents on the right. At the bottom we
include some static text that will be displayed on every page.

Figure 7: Seaside SushiNet application in SmallWiki.

Furthermore in SmallWiki any Seaside component can be added
exactly the same way as one would add a page into the wiki tree.
In the above example we were using Seaside components that were
particularly designed to be used within the wiki and provide its core
functionality, however any other Seaside application can be added
exactly the same way. In Figure 7 one can see a sushi web shop

that is included with the Seaside framework and is often used to
demo the power of Seaside [3]. Without changing a line of code in
the application itself and in SmallWiki it was added and is running
within the wiki.

4. EXTENDING SMALLWIKI
As SmallWiki has been designed to be extensible and customizable,
in this section we want to give some examples of small extensions.

4.1 Fixing broken links
Since URLs and associated resources are changing from day to day
it is a common issue that web-pages contain invalid links. There are
plenty of tools available that address this issue by going trough a
web-site, parsing the HTML and checking the validity of the links.
In SmallWiki we are able to address this issue simply by creating
a subclass of Visitor and overriding the message visitExternalLink:
to ask the link wether it is pointing to a valid resource and collect
the broken ones within a collection. A user-interface might then
start this visitor, display the broken links within a report and allow
the responsible user to edit the links from one central place without
being forced to go into every page and fix them manually. The only
method to be implemented looks like the following one. As we will
see later on in Section 5.2.1 we might also use the query engine and
specify a query like kind = ’ExternalLink’ AND isBroken = true to
achieve the same result.

BrokenLinkCollector � visitExternalLink: anExternalLink
anExternalLink isBroken

ifTrue: [collection add: anExternalLink].

4.2 Converting documents
It can be very convenient to convert a particular page or even a
whole wiki tree in a different format than HTML, for example for
exporting or printing. Since all the pages and documents are kept in
one tree of objects it is trivial to write a visitor that walks this tree
of entities and exports the contents in a format like LATEX, OASIS
(Open Document Format for Office Application, OpenOffice) or
RTF (Rich Text Format, Microsoft Word). In fact this is exactly the
same way as for creating the wiki syntax or the HTML view for
the web browser. The following code extract shows the part of the
rendering visitor emitting lists within a document as LATEX:

LatexRenderer � visitOrderedList: anOrderedList
stream nextPutAll: ’\begin{enumerate}’; cr.
self visitAll: anOrderedList children.
stream nextPutAll: ’\end{enumerate}’; cr.

LatexRenderer � visitUnorderedList: aUnorderedList
stream nextPutAll: ’\begin{itemize}’; cr.
self visitAll: aUnorderedList children.
stream nextPutAll: ’\end{itemize}’; cr.

LatexRenderer � visitListItem: aListItem
stream nextPutAll: ’\item ’.
self visitAll: aListItem children.
stream cr.

4.3 Photo Gallery
There are a lot of photo gallery implementations around that allow
one to upload pictures and automate the repetitive task of creating
thumbnail pictures and linking them to original pictures. However
usually this approach fall short of supporting text annotations, ad-
dition of extra links to other pictures or external sites, or inclusion

into an existing web-site. A web gallery is currently being devel-
oped on top of SmallWiki. By subclassing File, we get a Picture
class that can be added anywhere in the wiki and provides addi-
tional methods such as to scale and rotate or to query the width
and height of the picture. Creating a subclass of Page called Album
allows us to display a collection of pictures as thumbnails and nav-
igate them easily. Of course these two new structure types can be
added and transparently linked from anywhere within the wiki.

5. MAGRITTE
Lot of applications consist of a big number of input forms and di-
alogs, that need to be built and validated manually. Developers
need a way to specify how objects are structured and how they can
be modified so that views and editors can be created almost auto-
matically. In SmallWiki, each domain element is described by a
meta-description. The meta-description framework is called Ma-
gritte. Having such a description not only allows us to automati-
cally create Seaside components as views for the web, but also to
build other user interfaces without having to write a single line of
code. It automates searches on our domain model, implements per-
sistency, etc. Moreover, when changing the structure of a class one
has to change the description at one single place and all the parts
of the model and the user-interface that rely on the provided de-
scriptions immediately adapt to the new requirements, avoiding to
re-factor different parts of the code.

5.1 Magritte in a Nutshell
Magritte is a meta-description framework, describing domain in-
stances and their respective fields [6]. It contains not just type in-
formation, but also more semantic information: it specifies how the
field is accessed, an optional label and comment; furthermore it de-
fines boolean properties like if it the field is required, read-only,
visible, persistent, etc.

LoginCommand
username
password

Command
context

Description
label
properties
beOptional
beReadonly

BooleanDescriptionStringDescription

SmallWiki 2

WikiObject
description

Magritte

represented by

Beach

Seaside
Component Renderer

TextInput
Component

SelectList
Component

...

Figure 8: Magritte Description of the Command Hierarchy.

Meta-descriptions in SmallWiki are not only used for describing
the domain model itself but also for the SmallWiki back-end object
representation objects, such as the command objects mentioned in
Section 3.5. As an example let’s have a look at the copy command
in SmallWiki. On the class side there are two methods each return-
ing a description. Both methods are initialized with a selector to
access the value of the model; i.e., for the title description only the
read-accessor title is specified, but Magritte will automatically de-
fine the write-accessor title:. The descriptions of the title and target

are tagged to be required, which means that both fields cannot be
left empty.

CopyCommand class � descriptionTitle
ˆ(MAStringDescription selector: #title label: ’Title’ priority: 100)

beRequired;
yourself.

CopyCommand class � descriptionTarget
ˆ(SW2StructureDescription selector: #target label: ’Target’ prior-

ity: 200)
beRequired;
yourself.

When asking an instance of such a copy command for its descrip-
tion, Magritte collects all the methods on the class side starting with
the name description and returns a composed description consisting
of the two elements as seen above. The value of the priority is used
to sort the descriptions as preferred to give a consistent look in the
user-interface.

Figure 9: Automatically created web-interface to copy a page.

There are multiple uses of such meta-descriptions. The most imme-
diate one is that a description is used to create a visual Seaside com-
ponent. Getting a Seaside component allowing the user to edit the
command instance is as simple as sending asComponent. Usually
the returned component is then decorated with a form, displaying a
save and a cancel button, and a validator, catching and displaying
any validation errors if necessary. Figure 9 shows how this compo-
nent looks like with the default style-sheets used. We have already
seen a very similar picture in Figure 4, where we sent asMorphic
instead of asComponent to the same command to get a dialog for
the OmniBrowser user-interface.

The following code presents how the copy page command shown
in Figure 4 and Figure 9 were created:

” Morphic View ”
result := aCopyCommand asMorph

addButtons;
addWindow;
callInWorld.

” Seaside View ”
result := self call: (aCopyCommand asComponent

addValidatedForm;
yourself).

Descriptions are not just static elements that are solely defined on
the class side and that never change. They can also be composed,

modified and created at runtime. Composed descriptions under-
stand the Smalltalk collection protocol, hence different views can
be easily built by selecting only a certain sub-set of elements of a
domain object. In addition descriptions of different domain-objects
can be combined to a bigger one.

Another feature of Magritte is to give the power to create, add and
modify certain descriptions to the user: since descriptions are de-
scribed too with meta-description, a simple interface enables users
to build forms from within their web browser, without writing a sin-
gle line of code. Figure 10 shows an example of such an interface,
in which the user defined a description for an address database.
Scripting environment like HyperCard were very popular around
1990, Magritte and SmallWiki are a first step to enable such an
approach in the context of web-applications.

(1)

(2)

(3)

Figure 10: Building forms from the web browser: (1) the form
definition with all its descriptions, (2) editing a description, (3)
a preview form build from the currently defined descriptions.

5.2 Power of Magritte
In the following sections we discuss the implementation of the
search engine and the persistency framework with the help of Ma-
gritte.

5.2.1 Searching
Wikis tend to grow over time, hence it becomes very important
to have sophisticated ways to locate the desired information. In
most cases we want to search for a page containing a particular
sub-string, however sometimes it would be more precise to only
look for pages that satisfy a certain condition. SmallWiki with the
help of the meta-descriptions of Magritte allows one to write such
conditions in the search field and display the matching pages. The
query kind = ’Table’ AND rowCount > 3 returns all the pages with
tables that have more than 3 rows and url matches: ’*.ch*’ returns
pages with external links having a swiss domain.

To implement this functionality we have written a parser that reads
the search expression and builds a tree of relations. When we send

isSatisfiedBy: to the root node of this tree, we either get true if the
argument matches the criteria or false if it doesn’t match as a return
value. The relation tree is evaluated recursively using an escaper to
abort the evaluation immediately if nothing can change the result
of the expression anymore, what largely enhances the speed of the
query processing. To determine if a certain basic condition such
as title beginsWith: ’SmallWiki’ is met the meta-descriptions come
into play again: the model object to be checked is asked for its
descriptions and it is checked if it has got an attributes called title
and if this attribute is useable with the relation beginsWith:. If those
two preconditions are fulfilled the value is read from the domain
model, the comparison is done and the result is returned. Again
we have a visitor that walks over the wiki tree and collects all the
possible matches. A simple widget is used to display the result of
the query.

DecoratedObject Decoration
*1

Structure
* 1

Page File

Children

Security

...

...

Visitor
visitPage: Page
visitFile: File
visitChildren: Children
visitSecurity: Security
...

WikiObject
accept: Visitor

QueryVisitor
visitPage: Page
visitChildren: Children
...

QueryVisitor>>visitPage: anObject
 super visitPage: anObject.
 self visit: anObject doument.

QueryVisitor>>visitChildren: anObject
 super visitChildren: anObject.
 anObject do: [:child | self visit: child].

Figure 11: Walking trough the SmallWiki model using a visitor.

The following example shows how the query string is parsed and
passed into the visitor, that descends into each wiki structure, as
seen in Figure 11, and then collects and returns all the matching
structures.

SearchWidget � search
searchResults := QueryVisitor

start: self context kernel root
query: (MARelationParser parse: self queryString).

DescribedRelation � isSatisfiedBy: anObject
| description |
description := anObject descripition

at: self selector
ifAbsent: [ˆ false].

ˆ super isSatisfiedBy: (description read: anObject).

5.2.2 Persistency and Versioning
SmallWiki takes a prevalence [12] or change-set-based approach to
version its information. The idea is to keep the whole data in RAM
– if there isn’t enough RAM on the server it will be transparently
swapped out by the operation system – so the system runs very fast
as no objects have to be de-serialized. To avoid loosing data, every
night, or in any reasonable period, a snapshot of the whole wiki tree
can be saved. In addition all commands that are executed on the
model are serialized immediately after being processed. The meta-
descriptions of the command tells the persistency layer how the
object has to be serialized and eventually restored later on. During
crash recovery, SmallWiki retrieves its last saved state from the
snapshot and then reads in the commands and applies them to the
model exactly as if it had just come from the user interactions.

With this approach we get versioning- and undo-facilities for free.

Suppose we want to see all the changes that have been made to a
specified page, we just have to go trough the command log and se-
lect all the edit-commands of this particular page. Loading them
allows us to see the changes of that page, and restore any old ver-
sion by re-applying the command.

6. LESSONS LEARNED
During the implementation of the two versions of SmallWiki, we
learned that having objects objects down to the roots is the key
aspect of efficiently implementing an extensible wiki that adapts to
a wide variety of needs. In the following paragraphs we compare
some implementation details from SmallWiki 1 to SmallWiki 2 and
to other wiki implementations:

Testing. Compared to the first version, SmallWiki 2 increased the
number of unit tests from 200 to more than 1200, cover-
ing the whole model of SmallWiki, including Magritte. This
makes it possible to change and verify the code and comes in
extremely useful when porting SmallWiki to other Smalltalk
dialects or when writing extensions that could break existing
code.

Parser. Using a parser to read the wiki input, to build a proper ob-
ject model and to walk trough it using visitors saves a lot
of code: the current implementation of SmallWiki featur-
ing scanner, parser and document hierarchy only consists of
550 lines of Smalltalk code, whereas the same functionality
implemented for WikiPedia [11] using regular-expressions
counts more than 3′000 lines of code (excluding comments).
Moreover these regular-expressions are duplicated trough-
out the code-base of WikiPedia, e.g., to implement the query
engine, what makes it extremely difficult to change and en-
hance the syntax.

Structures. In the first version of SmallWiki, we distinguished be-
tween a folder (i.e., a page with children) and a page. This led
to problems because it was difficult to change the structure of
a wiki after the fact. In the new version, we only have pages
and no folders but any page can be decorated to get children.
Hence any page can play to role of a folder and vice versa
dynamically a page can loose its children. This means the
user is not enforced to decide upfront how his wiki will be
structured, but is able to add and remove children later on as
wished. SmallWiki also provides an interface to move and
copy whole subtrees to different locations easily.

Separation. SmallWiki 1 was designed to be used within a web
context [9]. It was built on top of its own web framework.
However, web application development is difficult when hav-
ing to deal with the shortcomings of the HTTP protocol as
the right abstractions are missing [3]. In SmallWiki 1 the
model and the view were strongly coupled. For example an
action to be performed on a page was a mixture between a
Command design pattern [4] and the associated web view.
It was then nearly impossible to use a command in a differ-
ent view. Now SmallWiki 2 cleanly separates the model and
the view in different packages that can be loaded and used
independently.

View. In SmallWiki 1 all the application state was kept as strings
in the URL, its query parameters, in HTTP header fields and
in associated session-cookies, exactly the way like most of
todays web applications do. Using Seaside as a default view

allows us to propose a much cleaner solution. Seaside pro-
vides a nice abstraction over this low-level protocol and we
are now able to keep all our state within the application com-
ponents themselves as proper objects. It is therefore not nec-
essary to manually serialize and de-serialize our objects as
strings.

Embedding. Structures can be embedded into each other by cre-
ating a special kind of link, this greatly enhances the possi-
bilities to layout and structure the wiki. SmallWiki supports
absolute and relative links, so that editors can easily create
navigation facilities between the nested structure.

Commands. Modifying the model trough the use of a clean im-
plementation of the command pattern allows the implemen-
tation of a prevalence like framework. Furthermore having
the whole command history available gives us the possibility
to undo modifications and restore the state of the wiki at any
point in the past.

Meta-Description. We learned that having a powerful meta-model
brings a lot of flexibility in different areas into the frame-
work. Without writing additional code we are able to alter
different parts of SmallWiki, such as the views, the search
and the persistency solely by changing or adding a few lines
of meta-descriptions.

Persistency Persistency and versioning is a crucial part of any
wiki. In SmallWiki 1 we were using a simple snapshot mech-
anism, dumping out all the structures in user defined inter-
vals. The obvious problem here is that if the computer crashes
just before doing a snapshot all the changes since the last
snapshot are lost. The versioning of the pages was achieved
by keeping a collection of all the old pages within the model,
that has disadvantages as well: since old versions are only
accessed rarely and therefore it is not efficient to keep them
in memory all the time. In addition, the memory footprint of
SmallWiki 1 never shrunk, since all the changes have to be
versioned, therefore even deleting parts of the wiki didn’t re-
duce its actual size. This could lead to performance problems
while saving and loading a snapshot of a huge wiki with lots
of mutations over the time. SmallWiki 2 provides prevalence
based approach, so that every change is stored to the filesys-
tem so that any point after a snapshot can be easily restored
by replaying the applied commands.

7. CONCLUSION
Wikis are a quick and efficient way to collaborate via simple web-
browser interfaces. However, as wikis grow up, more advanced
functionalities need to be incorporated (such as advanced manage-
ment, maintenance and search operations). Current implementa-
tions of wikis that are based on string manipulation are badly suited
to support this new generation of wikis.

This paper presents SmallWiki, a fully object-oriented wiki and
content management system that is described using Magritte as a
meta-model and that uses the Seaside framework to overcome tradi-
tional HTTP-limitations. Magritte forms the conceptual backbone
of the implementation. Seaside lets SmallWiki cleanly divide do-
main model from UI, alleviating the need for object serialization.
The resulting combination was shown to be very customizable.

Our long term goal of SmallWiki is to define an environment to
enable user scriptable web applications, similar to HyperCard in its
time.

Acknowledgment. We gratefully acknowledge the financial sup-
port of the Swiss National Science Foundation for the project “Re-
cast: Evolution of Object-Oriented Applications” (SNF 2000-061-
655.00/1).

8. REFERENCES
[1] J. Brant and D. Roberts. SmaCC, a Smalltalk

Compiler-Compiler.
http://www.refactory.com/Software/SmaCC/.

[2] S. Ducasse and F. Ducasse. De l’enseignement de concepts
informatiques. Journal de l’association EPI Enseignement
Public et Informatiques, 4(97), Sept. 2000.

[3] S. Ducasse, A. Lienhard, and L. Renggli. Seaside - a multiple
control flow web application framework. In Proceedings of
ESUG Research Track 2004, Sept. 2004. To appear.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[5] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, A practical
Smalltalk written in itself. In Proceedings OOPSLA ’97,
pages 318–326. ACM Press, Nov. 1997.

[6] R. E. Johnson and B. Woolf. Type object. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Languages of
Program Design 3. Addison-Wesley, 1997.

[7] B. Leuf and W. Cunningham. The Wiki Way: Collaboration
and Sharing on the Internet. Addison-Wesley, 2001.

[8] C. Putney. OmniBrowser, an extensible browser framework
for Smalltalk. http://www.wiresong.ca/OmniBrowser/.

[9] L. Renggli. Smallwiki: Collaborative content management.
Informatikprojekt, University of Bern, 2003.

[10] Seaside, developing sophisticated web applications in
Smalltalk. http://www.seaside.st.

[11] WikiPedia, a web-based, free-content encyclopedia.
http://www.wikipedia.org.

[12] K. Wuestefeld. Prevayler, a prevalence layer for Java.
http://www.prevayler.org.

	Introduction
	SmallWiki in Action
	Architecture
	Separation of Concerns
	Pages and Files
	Document Objects
	Visitors
	Context and Commands
	Environment

	Extending SmallWiki
	Fixing broken links
	Converting documents
	Photo Gallery

	Magritte
	Magritte in a Nutshell
	Power of Magritte
	Searching
	Persistency and Versioning

	Lessons Learned
	Conclusion
	References

