
SweetWiki: Semantic Web Enabled Technologies in Wiki
Michel Buffa

Mainline Group, I3S Laboratory, University of Nice
Acacia Group, INRIA Sophia-Antipolis

France
33 4 92 38 50 15

buffa@unice.fr

 Fabien Gandon
Acacia Group, INRIA laboratory, Sophia-Antipolis,

France
33 4 92 38 77 88

Fabien.Gandon@sophia.inria.fr

ABSTRACT
Wikis are social web sites enabling a potentially large number of
participants to modify any page or create a new page using their
web browser. As they grow, wikis may suffer from a number of
problems (anarchical structure, aging navigation paths, etc.). We
believe that semantic wikis can improve navigation and search. In
SweetWiki we investigate the use of semantic web technologies
to support and ease the lifecycle of the wiki. The very model of
wikis was declaratively described: an OWL schema captures
concepts such as wiki word, wiki page, forward and backward
link, author, etc. This ontology is then exploited by an embedded
semantic search engine (Corese). In addition, SweetWiki
integrates a standard WYSIWYG editor (Kupu) that we extended
to support semantic annotation following the "social tagging":
when editing a page, the user can freely enter some keywords and
an auto-completion mechanism proposes existing keywords by
issuing queries to identify existing concepts with compatible
labels. Thus tagging is both easy (keyword-like) and motivating
(real time display of the number of related pages) and concepts
are collected as in folksonomies. To maintain and reengineer the
folksonomy, we reused a web-based editor available in the
underlying semantic web server to edit semantic web ontologies
and annotations. Unlike in other wikis, pages are stored directly in
XHTML ready to be served and semantic annotations are
embedded in the pages themselves using RDFa. If someone sends
or copies a page, the annotations follow it, and if an application
crawls the wiki site it can extract the metadata and reuse them. In
this paper we motivate our approach and explain each one of
these design choices.

Categories and Subject Descriptors
K.4.3 [Organizational Impacts]: Computer-supported
collaborative work.

General Terms
Management, Measurement, Documentation, Experimentation,
Human Factors, Standardization.

Keywords
Wiki, Semantic Web, Social Tagging, Ontology, Web 2.0.

1. INTRODUCTION
Why did wikis become such a phenomenon? At WikiSym 2005,
Ward Cunningham and Jimmy Wales provided some elements of
an answer: “a wiki is like a garden; users (…) must take care of
it. Start with some seeds and watch it grow, and the wiki will
become moderated by its users’ community, (…) respect and trust
the users, (…) good things happen when you trust people more
than you have reason to, let everybody express his opinion, no
censorship, consensus must be reached, (…) the wiki is adapted to
a dynamic social structure because of its refactoring features (…)
Do not impose a rigid structure, users will refactor and structure
the wiki as it grows (…)” [18, 19]. This sounds revolutionary and
indeed, social aspects are important and cannot be neglected when
talking about wikis. Wikis introduced groundbreaking innovations
as a technology supporting collaborative web authoring, but also
at the level of the process, philosophy and even sociology of such
collaborative authoring [16, 17]. However, even when wikis have
been adopted by a large community, they may suffer from a
number of problems. The main problem reported is the open
structure that makes navigation, orientation and search difficult
[2, 3, 23]; wikis often fail to scale with the number of pages.
Wikipedia defines a Semantic Wiki as a "Wiki that has an
underlying model of the knowledge described in its pages. (…).
Semantic Wikis allow capturing or identifying further information
about the pages (metadata) and their relations. Usually this
knowledge model is available in a formal language, so that
machines can (at least partially) process it". We believe that
semantic wikis can be searched, navigated and shared with other
applications in better ways than regular wikis. SweetWiki is such
a semantic wiki. To address the lack of structure and structuring
tools SweetWiki integrates semantic web technologies at the core
of its wiki engine. It does so without changing the ease of use that
makes wikis so popular.
In section 2 we focus on the problems encountered by large wikis,
in particular navigation and search, and we will explain the
concepts of social tagging and folksonomies as means to improve
navigation and search. In section 3 we present SweetWiki in
details and insist on its innovative features. In section 4 we
present related works and compare them to SweetWiki. Finally
we discuss the future of semantic wikis and we mention the
extensions we are working on.

1. MOTIVATING REMARKS
Few academic papers have addressed the intranet-wiki topic [1].
In [3] we detailed two experiences we conducted over several
years with intranet wikis: (1) six years ago we installed a wiki
which is today at the heart of the intranet of the Computer Science
department of the University of Nice, with about 400 regular
users [4]; and (2) since 2001, we have a close relationship with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WikiSym’06, August 21–23, 2006, Odense, Denmark.
Copyright 2006 ACM 1-59593-413-8/06/0008...$5.00.

69

the ILOG Company which has developed an impressive wiki-
powered intranet [2].
Companies like Google, Motorola and the New-York Times have
made public the way they use a wiki in their organization [5, 6, 7,
chapter 12 of 8]. In [3] we defined the goals of a business
organization intranet and showed how the web technology and
tools helped or failed to reach these goals. We focused on the wiki
concept and concluded that its success relies on several social
conditions that cannot always be found in the business
organization’s culture (e.g. people must understand why they are
working together; there must not be too much social friction, etc.)
Finally, wikis may suffer from a number of problems. The main
problem reported is the difficulty experienced by users in finding
their way, in navigating and searching the wiki, especially when it
becomes large. Traditional wikis do not scale well unless their
structure and structuring tools are improved.
ILOG uses the aspSeek search engine to index and search the
resources of their wiki-based intranet. Looking at their logs over
time it become apparent that the use of the search engine suddenly
dropped, and after a short time people just stopped using it.
Interviews and investigations proved that the assumption that
everybody knows how to use a search engine was wrong [2, 3]. In
addition, on the Internet, people can accept not finding what they
are searching for -maybe it is just not out there; on an intranet,
when people know that what they are looking for is there, they
don’t understand why a search engine does not find it and finally
distrust it altogether. After many usability tests, the user interface
for the search engine was improved, but people still complain
about the difficulty to find things on the wiki. The interviews and
questionnaires at the University of Nice confirmed the same
problems with their wiki: search is considered less and less useful
as the wiki grows [3].
The New York Times Digital used a wiki that became huge, with
thousands of pages and several problems occurred [8]. They first
added navigation bars, but this did not solve the navigation
problem. WikiNames collision was another problem: when one
creates a wiki page one has to choose a name for this page; after
two years, users sometimes had to try dozens of different names
before finding a name that had not already been used. The
original idea with WikiNames collision was that if you find out
that there is a page that already exists with the same name, you
would “join it” because it is supposed to be the best place for
saying what you have to say. But it just did not work at the NY
Digital: people wanted to create their own page. They invented
WikiNames that were no longer meaningful according to their
content. Navigation and searching were so difficult that it was
nearly impossible to find a document without having bookmarked
it. Everybody realized that the wiki was becoming a mass of
increasingly inaccessible pages but the user community was not
ready to do the necessary work for refactoring and organizing it
all. The writing and publishing process in a national newspaper is
very structured, and NY Times Digital’s employees could not get
any trace of such a workflow in the wiki. What appeared as a
promising tool that had been widely adopted turned out to be a
problematic solution for helping in the publishing process.
Structure and organization became such a big problem that they
had to stop relying on a wiki. It was not completely abandoned
but relegated to a shared notepad, with the structured work being
done in other tools.

One can argue that the choice of another wiki engine could have
changed the outcome of this experience, in particular a wiki
engine supporting the concept of workspaces like TWiki,
MoinMoin, JotSpot, SocialText, etc. But we think the problem
runs deeper. Wikis are designed to be structured by the users
themselves. People differ from each other, every individual has
his own way of classifying and organizing data, and this may
change over time. A hierarchical structure like the one proposed
by the workspaces is certainly a good thing from a technical point
of view but it provides a superficial modularization of a wiki [14].
Horizontal navigation (following links in the page itself) is the
means most people use. Usability tests showed that most people at
ILOG don’t even know the names of the different workspaces.
Interestingly, a common behavior we noticed is that users started
to add category keywords on the wiki pages. These keywords are
WikiNames that lead to pages that propose hyperlinks to all pages
belonging to the same category. This naïve classification helps
but does not scale. We drew a parallel between this emergent
behavior and the phenomenon of social tagging used in the public
Web by popular sites such as del.icio.us and flickr.com and also
widely used in blogs. You can annotate your blog entries or the
pictures you posted to flickr by associating keywords to them
forming a quasi-classification on-the-fly. These tags are used by
technorati.com’s web bots and a link to your tagged resource is
added to the other entries that share the same tag. The main
interest in this way of tagging is its social approach to
classification. People can use whatever tags they feel represent
the content of their writing, but they may find out that this tag has
never been used before. So there is a higher probability they will
add other tags that link them to other resources. If one creates a
new tag, it is just added and will be proposed as a choice when
another person enters a tag that starts with the same letters, and
maybe this person will in turn choose it. This way, users as
individuals, can categorize their writing any way they want and at
the same time begin a grass roots taxonomy or folksonomy.
Social tagging and folksonomies are the subjects of debate in
different communities, including the semantic web community
[12]. These concepts are often described as an alternative to
ontologies and to the semantic web approach in general [11, 15].
Gruber in [15] published an interesting survey of these different
points of view. Some describe tags and folksonomies as “cheap
metadata for the masses” (taxonomies and ontologies being the
land of experts) [33] and others think they are the one true way
[11] and that a flat-hierarchy is more human-brain-friendly,
imitating the word-as-a-label-for-things. But this is also the main
drawback of the tags: human-language-structured thought can
jump between concepts; the same word can have totally different
meanings. Last but not least: each human has his own world-
experience, his own tagging-system that may not be generalized.
Where categories are managed by specialists to achieve the best
classification, tags are users’ rough approximation of
classification for a practical use (ethnoclassification).

2. SWEETWIKI
Wikis were designed in the mid-nineties exploiting the web
technologies of the time i.e. mainly HTML, HTTP and URIs. To
make up for the lack of simple remote edition and storage
facilities Wikis developed WikiML variants (wiki markup
languages), WikiWords for specifying hypertext links, simple
versioning mechanisms, etc. The idea of SweetWiki is to revisit

70

the design rationale of Wikis, taking into account the wealth of
new standards available for the web eleven years later to address
some of the shortcomings identified through experience.
After evaluating several wiki engines (regular or semantic), we
decided to write a new engine because our vision of the wiki of
the future was not compatible with what we found in existing
wikis. We wanted our wiki to:
• rely on web standards: standards for the wiki page format

(XHTML), for the macros one can put in a page (JSPX/XML
tags), etc.;

• be articulated around a semantic engine that supports
semantic web languages like RDF, RDFS, OWL, SPARQL,
etc.;

• get rid of the WikiML dialects used and modified by most
wiki systems. We took this decision based on the painful
experiences we had with the ILOG intranet during the
introduction of WYSIWYG editors in TWiki. We
encountered many problems during the translation between
the WikiML and the XHTML languages. Many WikiML
variants do not support all the XHTML produced by the
existing editors. Mixing WikiML with XHTML code was
not a clean approach and users were asking for more intuitive
interfaces. Furthermore, we wanted an alternative to
translating WikiML to XHTML each time a page is viewed
and doing the reverse translation each time a page is saved.

• propose faceted navigation and enhanced search tools;
• propose metadata editing in the same user interface used for

content editing.

2.1 Principles
Wikis are Web sites where pages are organized around
WikiWords and sometime other constructs such as WikiWebs or
Workspaces. To go beyond this informal hyperlink structure,
semantic tagging and restructuring functionalities are needed. To
make explicit, manipulate and exploit such a structure we
introduced two ontologies:
• an ontology of the wiki structure: the wiki concepts are

usually buried in their ad hoc implementations; this structure
is a special kind of meta-data (forward links, authors,
keywords, etc.) relying on an ontology of wikis (WikiPage,
WikiWord, WikiWeb, etc.). By making this structure and its
ontology explicit, we can reason on it (e.g. to generate
navigation pages) we can modify it (e.g. re-engineer the wiki
structure) and we can build on it (e.g. interoperability between
several wikis).

• an ontology of the topics: each wiki page addresses one or
more topics. In order to ease navigation while maintaining the
usual simplicity, we implemented the usual tag/keyword
mechanism with a domain ontology shared by the whole wiki.
By making this topic ontology explicit we can once again
reason on it (e.g. find semantically close topics) make
complex queries (e.g. find pages tagged with close topics), we
can modify it (e.g. tidy the ontology, merge equivalent
concepts, etc.)

The ontology of the wiki structure is maintained by developers of
the wiki. The domain ontology is enriched directly by the users
and may be restructured by administrators or volunteers of the site
to improve the navigation and querying capabilities. Other
ontologies may be added at runtime and be immediately
accessible to users. To implement these principles we relied on a

semantic web server architecture described in the following
section.

2.2 Architecture
Figure 2 summarizes the architecture of SweetWiki. The
implementation relies on the CORESE semantic search engine for
querying and reasoning [38] and on SEWESE, its associated web
server extension that provides API and JSP tags to implement
ontology-based interfaces, as well as a set of generic
functionalities (security management, ontology editors, web
application life cycle, etc.)
The server relies on a standard web application architecture:
filters manage the session (e.g. authorization, user profiles, etc.)
and the template of the site (headers, trailers); pages are directly
available in XHTML or JSPX for browsing; a servlet handles
saved pages; a set of JSP tags provide high level functionalities
(e.g. submit a SPARQL query and format the result with an XSLT
stylesheet); javascript libraries are served to provide a
WYSIWYG editor (based on Kupu).
Starting from the users' side, SweetWiki is based on Kupu[34] an
XHTML editor in JavaScript which allows us to replace
traditional WikiML editing by a WYSIWYG interface in the
user’s browser. The directly produced XHTML is the persistence
format. Thus, once saved, a page stands ready to be served by the
Web server.
Pages are standalone XHTML files including their metadata and
thus they can be crawled by other applications. To address
structuring and navigation problems in wikis we wanted to
include tagging at the core of the wiki concept, thus we integrated
four new web technologies:

1. RDF/S and OWL are W3C recommendations to model
metadata on the web [35];

2. SPARQL is a recommendation for a query language for
RDF [39];

3. RDFa is a draft syntax for Embedding RDF in XHTML
[36];

4. GRDDL is a mechanism for getting RDF data out of
XML and XHTML documents using explicitly
associated transformation algorithms, typically
represented in XSLT [37].

The RDF model has an XML syntax but it is currently impossible
to validate documents that contain arbitrary RDF/XML tags and
therefore it is problem to import RDF/XML into other markup
languages such as XHTML. On the other hand, the external
annotation of document in RDF/XML can result in significant
data duplication between the actual annotated resource and the
RDF/XML annotation. For the sake of maintenance, concision,
and encapsulation it is often better to add RDF to a document
without repeating the document's existing data. RDFa proposes a
solution to augment existing markup with metadata, using class
and property types defined in RDF Schemas, combined with the
existing content from the host language.
In XHTML using RDFa, a subject is indicated using the attribute
about and predicates are represented using one of the attributes
property, rel, or rev. Objects which are URI-referenced are
represented using the attribute href, whilst objects that are
literals are represented either with the attribute content, or the
content of the element annotated.
The example in figure 1 shows how a tag <a> is augmented with
the attribute rel to annotate a blockquote with the URL of its
source according to the Dublin Core ontology.

71

<blockquote>
As defined in <a rel="dc:source"
href="http://en.wikipedia.org/wiki/Semantics">
the wikipedia pages, semantics is the study
of meaning but it is distinguished from

ontology
in being about the use of a word more than the
nature of the entity referenced by the word.

</blockquote>

Fig 1. example of RDFa

Contrarily to external RDF annotations, this approach is inline
with the wiki spirit where everything is done in the page:
anything can be copied and pasted in one place (the wiki page)
even using a WYSIWYG editor. With RDFa we have both page

data and metadata in the same standalone file (XHTML) and
pages can be crawled by external applications or saved by users
using their browser without any loss of information.

When the servlet receives a page to save it also applies the
GRDDL XSLT stylesheet to it in order to extract the RDF
embedded in it and output it as RDF/XML files.

Any classical wiki query is done relying on the Corese engine.
For instance when a new page is created corresponding to a
WikiWord, to identify other pages referencing this WikiWord, the
servlet issues a SPARQL query.

Fig 2. Architecture of SweetWiki in SeWeSe.

Fig 3. Editing a homepage and tagging it with personal interests.

72

Fig 4. Tags are suggested as the user enters keywords, the number of pages using each tag is displayed and the related category.

2.3 Focus on tagging: using semantic web
technology to implement a folksonomy
Like [13 and 14], we propose a mixed approach in order to
“organize the tags”: we link the tags together within a folksonomy
described using the semantic web languages, where tags are
organized in a hierarchy and related one to another using
relationships like subClassOf, seeAlso, etc. Grubert goes
further and proposed in [15] to define “an Internet ecology” for
folksonomies i.e. an ontology for describing folksonomies. Like
him, we believe that social tagging minimizes cost and maximizes
user participation. So we do support social tagging in SweetWiki,
but we also think that these tags must be organized. The system
we have implemented helps users build a better folksonomy while
relying on standard semantic web technologies for organizing and
maintaining the folksonomy. SweetWiki uses folksonomies and
social tagging as a better way to categorize the wiki documents
[9, 10].

SweetWiki integrates a standard WYSIWYG editor (Kupu) that
we extended to directly support semantic annotations following
the "social tagging" approach. As shown in Figure 4, when editing
a page, the user can freely enter some keywords in an AJAX-
powered textfield. As the user types, an auto-completion
mechanism proposes existing keywords by issuing SPARQL
queries to the semantic web server in order to identify existing
concepts with compatible labels and shows the number of other
pages sharing these concepts as an incentive to use them.

Furthermore, related categories are also displayed in order to
address the ambiguity of homonymy. With this approach, tagging
remains easy (keyword-like) and becomes both motivating and
unambiguous. Unknown keywords are collected and attached to
new concepts to enrich the folksonomy. Later on, community
experts may reposition them in the ontology, edit them, etc. The
feedback coming from the tags is useful for improving the
ontology.

When the page is saved in XHTML the associated metadata are
saved inside using the RDFa syntax, as illustrated by Figure 5.
Besides the topic tags (keywords and see also), metadata include
contextual information (e.g. author, last modification, etc.). Thus
the page stands ready to be served by a web server.

<head xmlns:sw="http://sweetwiki.inria.fr/"
xmlns:jv=" http://www.inria.fr/acacia/java-onto#">
 <meta content="JavaGui" name="sw:name"/>
 <link href="#admin" rel="sw:author"/>
 <meta content="2006-3-2" name="sw:modification"/>
 <link href="#Courses" rel="sw:hasForWeb"/>
 <link href="#JavaJPanel" rel="sw:forwardLink"/>
 <link href="#JavaJTable" rel="sw:forwardLink"/>
 <link href="[jv:GUI]" rel="sw:hasForKeyWord"/>
 <link href="[jv:JLabel]" rel="sw:hasForKeyWord"/>
 <link href="#JavaJPanel" rel="sw:seeAlso"/>
</head>

Fig 5. How the metadata are described in the wiki page file.

73

Fig 6. Faceted navigation links extracted from the tags

During the save process, the newly saved page metadata are
extracted using the semantic web server API. This API uses a
GRDDL XSLT stylesheet to extract the metadata in RDF/XML
format and feed them to the CORESE engine. Other wiki pages
that hold “create links” (links created before the current page
existed) are also updated and their metadata extracted using the
same process. The CORESE engine is then used to generate
faceted navigation widgets: the semantics of the tags is used to
derive related topics, query the engine on similar pages using
SPARQL queries, etc. (see Figure 6).
The page content is saved in pure XHTML and is ready to be
served (without any further translation as required with a wikiML
variant). When a SweetWiki document is requested by a web
browser, templates are used in order to integrate the faceted
navigation widgets around the page content. These templates may
be changed like the skins of TWiki for example, they are just used
for decorating the final document.

2.4 Ontology editor for maintaining and re-
engineering the folksonomy
Supervising tools are integrated in SweetWiki by relying on the
semantic web server SeWeSe. They are used to monitor the wiki
activity itself running SPARQL queries over the metadata e.g.

usage frequency for tags (See Figure 7), new tags, orphan pages,
etc.
In order to maintain and re-engineer the folksonomy, SweetWiki
also reuses web-based editors available in SeWeSe. In our
examples we tagged some Java courses, using a Java ontology.
Selecting this ontology in the editor, one can add/remove/edit
tags/concepts (Figure 8 and 9). In particular, if a tag/concept has
been recently added it may be inserted in the hierarchy. Figure 9
shows the concept editing tool.
Using these editors, the folksonomy and the annotations may be
updated. For instance, community experts can pick a couple of
tags and declare semantic relations between them such as
subClassOf. They may also merge concepts when two tags are
synonymous, etc. Enhancements of the ontology seamlessly
improve content sharing: search and faceted navigation benefit
directly from the updates. The way the system is designed,
versioning cannot break the annotations. If a tag is suddenly
missing it is just treated as a new tag and if many pages exist with
the old tag (pages are not touched in tag editing process), the tag
would re-appear (with a high number of tagged pages,
encouraging other people to use it). Re-engineering the ontology
is a way of refactoring the wiki: new links appear as the ontology
is enriched.

74

Fig 7. tags sorted by popularity

Fig 8. The ontology editor, here illustrated with the Java
topics. It is possible to add/edit/merge/remove concepts and

properties and even import ontologies.

Fig 9. Editing a concept.

3. RELATED WORK AND POSITIONING
Many semantic wiki projects are being developed. Looking at the
state of the art we can distinguish between approaches
considering "the use of wikis for ontologies" and approaches
considering "the use of ontologies for wikis" (while a few engines
merge both approaches).
Most of the current projects on semantic wikis fall in the first
category i.e. they consider wiki pages as concepts and typed links
(in the page content) as relations or attributes. In this model,
called a “Wikitology” in [25], the Wiki becomes the front-end of
the ontology.
One of the first wikis to fall into this category is Platypus [21]
that imposes separately editing the metadata for each wiki page in
a “Wiki Metadata page”. It supports basic ontology editing but
with no consistency check between the annotations and the
ontology. It does not come with a reasoning engine and supports
only basic queries. Semantic metadata are used for improving
navigation but the main drawback is that the users have to switch
between editing normal text and editing semantic annotations as
these activities are done using two distinct text-based editors.
Other wikis like SHAWN [27] offer similar features. The other
wikis presented in this category address Platypus’ shortcomings
by allowing semantic annotations directly in the text of the page,
usually as typed links.
Rise [25] also falls in the first category: the ontology used by the
community is edited via the Wiki itself and a set of naming
conventions is used to automatically determine the actual
ontology from the Wiki content. A proprietary language is used
for describing the metadata while RDF exportation is possible.
Semantic information is used for navigation and consistency

75

checks. The ontology is built as wiki pages are updated (rebuilt
each night).
Rhizome [20] supports a modified version of WikiML (ZML) that
uses special formatting conventions to indicate semantic intent
directly in the page content. Pages are saved in RDF and another
editor can be used to edit the RDF directly. Rhizome authors
admit that this feature is dangerous as one can break the wiki
behavior by entering bad RDF. To mitigate the inherent dangers
of this level of openness, Rhizome Wiki provides fine-grain
authorization and validation alongside the use of contexts. It is not
clear how metadata improve the wiki behavior; there is no
advanced search and no help for navigating the wiki so far. RDF-
Wiki [29] is similar to Rhizome in that it allows RDF annotations
for external processing.
SeMediaWiki [26] is based on MediaWiki. In contrast to Rise,
typed links can also be used for specifying attributes of the page.
For example, the following text: San Diego is a [[is a::city]]
located in the southwestern corner of [[is located in::California]]
establishes the facts “San Diego is a city” and “San Diego is
located in California”. While the text Its coordinates are
[[coordinates:=32°42'54"N, 117°09'45"W]] defines an attribute
named “coordinates”. These data are used for faceted navigation.
SeMediaWiki translates these metadata into RDF but does not use
a reasoning engine yet. Other semantic extensions of MediaWiki
are available such as [32] but are still at early stage of
development.
Makna [31] is based on JSPWiki and provides semantic
extensions as typed links. It comes with the JENA reasoning
engine that allows complex queries. Its text-based editor proposes
extra HTML forms (ajax-powered) for quering the semantic
engine and look for concepts/properties/relationships. This is
useful in the case of a large ontology.
WikSar [22, 23] enables users to enter semantic annotations from
the wiki text editor using WikiWords. For example: if in a page
named “PrinceHamlet”, there is a line “FigureBy:
WilliamShakespeare”, it can be seen as a RDF statement. By
combining all such embedded statements, a formal ontology
emerges within the Wiki. The editor is text-based and proposes
neither help of any kind to the user nor any consistency check. As
pages are saved, the metadata are used to propose faceted
navigation. WikSar supports queries in RDQL and SPARQL and
queries can be embedded in wiki pages or templates. A distinctive
feature of WikSar is the “interactive graph visualisation and
navigation” tool that can be used for exploring the wiki through
its metadata.
Typed links are powerful but one has to remember each concept,
relation, property before typing it and this is not practical. Ace
Wiki goes further: with AceWiki [40] one can add and modify
sentences written using the ACE language (Attempto Controlled
English [41]), through the use of an interactive Ajax-based editor.
The editor is aware of the background ontology, and provides
guidance to the user by proposing only valid completions.
Moreover, the editor can be used to extend the ontology by
creating new concepts, roles and individuals. Therefore, it is also,
de facto, a simple ontology editor.
The second family of approaches focuses on "the use of
ontologies for wikis". IkeWiki [24] supports both WikiML and
WYSIWYG editing of page content and metadata, as well as page
tagging. The editor comes with some AJAX features like auto-

completion on metadata. It requires an existing ontology to be
loaded. Some support for ontology editing is provided. It uses
Jena and metadata are used for navigation and page rendering.
Annotations can be visualized in a frame next to the wiki page.
Each node is a link. IkeWiki has a nice user interface.
SweetWiki also falls into this second category. It does not
implement the Wikitology model yet but we have made provision
for such an evolution. So far we support the concepts of social
tagging and folksonomy. SweetWiki is close to WikSar since they
share many features like usage-driven ontology building, queries
embedded in the wiki pages (as JSP tags), edition of metadata and
page content in the same editor. SweetWiki adds a reasoning
engine and an extensible WYSIWYG editor for both content and
metadata, (like IkeWiki or Makna). The SweetWiki editor is
AJAX-enhanced and annotating pages leads to instant
gratification for users in two ways since as they type: (a) they can
see an instant display of faceted links the annotation will add to
the page; (b) an auto-completion mechanism proposes existing
concepts from the ontology, related categories and number of
pages sharing that annotation as an incentive to reuse existing
tags. Furthermore, SweetWiki comes with complete user-friendly
ontology supervising and editing tools. However, SweetWiki is
not dedicated to collaborative ontology management (e.g.
OntoWiki [30]) but we are currently brainstorming on how we
could add such capabilities to our engine.

4. DISCUSSION
To summarize the overall scenario explored in SweetWiki, we
have proposed an innovative approach that allows users to edit
wiki pages and tag them using a shared conceptualization behind
the scenes. In addition community experts can check the
underlying model being built, look at the tags/concepts proposed
by the users and (re)organize them. If this happens, annotations
that users entered are not changed, but faceted navigation and
search based on semantic queries are improved by new links.
As the reader may have noticed in the snapshots, our current
experimentation uses an online course on Java as a test case. The
learning objects are organized as wiki pages and annotated with
concepts of the Java language.
A number of evolutions are currently under consideration:

• Including forms in wiki pages: the easy creation of pages
makes it tempting to extend the concept to create small web
applications in particular processing small forms. SeWeSe
proposes a language merging SPARQL and JSP to generate
forms from the underlying ontology. We are planning on
integrating this facility to ease the development of small
front-ends e.g. dedicated advanced search.

• Natural language processing for automatic tagging: several
wikis are starting to analyze the text of wiki pages to suggest
potential keywords. Seamless deduction of metadata could be
achieved by applying natural language processing techniques
to (semi-)automatically derive keywords from the existing
content and its context.

• Complete versioning: support versioning of textual content,
semantic annotations and underlying ontologies at the same
time;

• Collaborative management of the folksonomy: provide
groupware to assist the distributed lifecycle of ontologies;

76

here the wikitology approach seems only natural and we need
more powerful tools to implement it efficiently.

This last point brings us back to the two-way vision wikis for
ontologies and ontologies for wikis. This division of the current
approaches is only symptomatic of the early times of semantic
wikis. In the long term future semantic wikis should merge these
two approaches as two facets of the same coin as some projects
already started to do it; the objective being to turn this two-way
vision into a virtuous circle where users maintain the ontology
and the wiki at the same time without any artificial distinction
between them. For us SweetWiki is an ideal experimentation
platform to test this vision. We are just starting to experiment
with the possibilities on different focus groups.

5. ACKNOWLEDGMENTS
Thanks to the student who worked on this project: Nicolas
Cazieux, Gaël Crova, Adrien De Georges, Guillaume Ereteo,
Claire Lecompte and Jeremy Passeron. Authors would also like to
thanks the ILOG Company and the COLOR commission of
INRIA for their scientific and financial support to the “Usable
Intranet” project, in the context of which the work presented here
started.

7. REFERENCES
[1] Stenmark, D. "Knowledge sharing on a corporate intranet:

Effects of re-instating web authoring capabilities".
Proceedings of ECIS 2005, Regensburg, Germany, May
2005, 26-28.

[2] Chat C. and Nahaboo, C. “Let's Build an Intranet at ILOG
Like the Internet!”, Proceedings of the Intraweb workshop,
WWW Conference 2006, Edinburgh.

[3] Buffa, M. “Intranet Wikis”. Intraweb workshop, WWW
Conference 2006, Edinburgh.

[4] Buffa M., Sander P., Grattarola J.-C. “Distant cooperative
software development for research and education: three years
of experience”, In proceedings of CALIE’04, 2004,
Grenoble, France.

[5] Finck, N., Hodder, M. and Stone, B. “Enhancing Internal
Communications with Blogs, Wikis, and More”:
http://www.nickfinck.com/presentations/bbs2005/01.html,
2005.

[6] Merrill, D. “A view into Google's inner workings”, audio
report about presentation at Vortex 2005:
http://www.citizenvalley.org/blocnotes/index.php?id_article
=241401

[7] Inside Google, Rough Type Blog,
http://www.roughtype.com/archives/2005/10/inside_google.
php

[8] Cunningham, W and Leuf, B. “The Wiki Way: Quick
collaboration on the web”. (2001). Addison-Wesley, Boston.

[9] Powers, S. “Cheap Eats at the Semantic Web Caf”é,
http://weblog.burningbird.net/archives/2005/01/27/cheap-
eats-at-the-semantic-web-cafe/. (2005).

[10] Hammond, T., Hannay T., Lund,B. and Scott, J. “Social
Bookmarking Tools, a General Review”, D-Lib Magazine,
April 2005, Volume 11 Number 4,
http://www.dlib.org/dlib/april05/hammond/04hammond.html

[11] Shirky. C. “Ontology is overrated”. Etech Talk.
http://www.itconversations.com/shows/detail470.html,
(2005).

[12] Smith. G. “IA Summit Folksonomies Panel”.
http://atomiq.org/archives/2005/03/ia_summit_folksonomies
_panel.html, . (2005).

[13] Bird. F. “Some ideas to improve tags use in social software,
flat hierarchy versus categories in social software”.
http://fredbird.org/lire/log/2005-05-17-tags-structuration-
proposal, (2005).

[14] Olsen. H. “Navigation blindness, how to deal with the fact
that people tend to ignore navigation tools”. The Interaction
Designer’s Coffee Break, Issue 13, Q1 2005.
http://www.guuui.com/issues/01_05.php

[15] Gruber. T. Folksonomy of Ontology: A Mash-up of Apples
and Oranges. First on-Line conference on Metadata and
Semantics Research (MTSR'05). http://mtsr.sigsemis.org/,
(2005).

[16] Désilet A., Paquet, S and Vinson N.G. « Are Wikis Usable?
», proceedings of the 2005 International Symposium on
Wikis, Oct 16-18, San Diego, California, USA.

[17] Shah, S. « The internet is Jain : How Gunslingin’
Technolibertarianism Leads to Lotus Petals », in proceedings
of New Forms Festival, Technography, Vancouver, BC,
2004.

[18] Cunningham. W. Ross Mayffeld’s notes on Cunningham’s
Keynote at Wikisym 2005. “Ward Cunningham on the
Crucible of Creativity”.
http://ross.typepad.com/blog/2005/10/ward_cunningham.htm
l

[19] Wales. J, founder of Wikipedia / Presentation at Wiki
Symposium 2005. http://recentchanges.info/?p=5

[20] Souzis. A. Building a Semantic Wiki. EEE Intelligent
Systems, vol. 20, no. 5, pp. 87-91, September/October, 2005.

[21] Campanini S.E., Castagna P. and Tazzoli R. Platypus Wiki: a
Semantic Wiki Wiki Web. Semantic Web Applications and
Perspectives, Proceedings of 1st Italian Semantic Web
Workshop. December 2004.
http://semanticweb.deit.univpm.it/swap2004/cameraready/ca
stagna.pdf

[22] Aumueller D. and Auer S. Towards a Semantic Wiki
Experience – Desktop Integration and Interactivity in
WikSAR. Proc. of 1st Workshop on The Semantic Desktop -
Next Generation Personal Information Management and
Collaboration Infrastructure, Galway, Ireland, Nov. 6th,
2005.
http://www.semanticdesktop.org/SemanticDesktopWS2005/f
inal/22_aumueller_semanticwikiexperience_final.pdf

[23] Aumueller D. SHAWN: Structure Helps a Wiki Navigate.
Proceedings of the BTW-Workshop, March 2005. W.
Mueller and R. Schenkel editor. http://dbs.uni-
leipzig.de/~david/2005/aumueller05shawn.pdf

[24] Schaffert S., Gruber A., and Westenthaler R.: A Semantic
Wiki for Collaborative Knowledge Formation . In: Semantics
2005, Vienna, Austria. November 2005.

77

[25] Decker B., Ras E., Rech J., Klein B. and Hoecht C. Self-
organized Reuse of Software Engineering Knowledge
Supported by Semantic Wikis. Proceedings of the Workshop
on Semantic Web Enabled Software Engineering (SWESE),
held at the 4th International Semantic Web Conference
(ISWC 2005) November 6th - 10th, 2005,Galway, Ireland

[26] Krötsch M. and Vrandečić D. and Völke M. Wikipedia and
the Semantic Web - The Missing Links. Proceedings of the
WikiMania 2005. http://www.aifb.uni-
karlsruhe.de/WBS/mak/pub/wikimania.pdf

[27] Aumueller, D. SHAWN: Structure Helps a Wiki Navigate.
BTW-Workshop “WebDB Meets IR”, Karlsruhe, 2005-05.
http://the.navigable.info/2005/aumueller05shawn.pdf,

[28] WikiOnt: http://boole.cs.iastate.edu:9090/wikiont/,
[29] RDF Wiki: http://infomesh.net/2001/05/sw/#rdfwiki,
[30] Hepp M., Bachlechner D. and Siorpaes K. OntoWiki:

Community-driven Ontology Engineering and Ontology
Usage based on Wikis. Proceedings of the 2005 International
Symposium on Wikis (WikiSym 2005).
http://www.heppnetz.de/files/ontowikiDemo-short-camera-
ready.pdf

[31] Dello K., Tolksdorf R. and Paslaru E. Makna. Free
University of Berlin. http://www.apps.ag-
nbi.de/makna/wiki/About, 2005.

[32] Muljadi H. and Takeda H. Semantic Wiki as an Integrated
Content and Metadata Management System. Proceedings of
ISWC 2005, Galway, Ireland.

[33] Merholz P. Metadata for the Masses. Adaptive Path Blog.
http://www.adaptivepath.com/publications/essays/archives/0
00361.php, 2004.

[34] Kupu : http://kupu.oscom.org/
[35] W3C, Semantic Web Activity, http://www.w3.org/2001/sw/

et http://www.w3.org/2001/sw/Activity
[36] RDFa Primer 1.0 Embedding RDF in XHTML

http://www.w3.org/2001/sw/BestPractices/HTML/2006-01-
24-rdfa-primer

[37] Gleaning Resource Descriptions from Dialects of Languages
(GRDDL) http://www.w3.org/2004/01/rdxh/spec

[38] Corby O., Dieng-Kuntz R, Faron-Zucker, C., Querying the
Semantic Web with the CORESE search engine. In Proc. of
the 16th European Conference on Artificial Intelligence
(ECAI'2004), Valencia, 2004, IOS Press, p. 705-709

[39] SPARQL Query Language for RDF
http://www.w3.org/TR/rdf-sparql-query/

[40] AceWiki : http://gopubmed.biotec.tu-dresden.de/AceWiki/
[41] Attempt to Controlled English (ACE) :

http://www.ifi.unizh.ch/attempto/

78

