Model-aware Wiki Analysis Tools: the Case of HistoryFlow

Oscar Diaz
oscar.diaz@ehu.es

Gorka Puente
gorka.puente@ehu.es

ONEKIN Research Group
University of the Basque Country
San Sebastian, Spain
www.onekin.org

ABSTRACT

Wikis are becoming mainstream. Studies confirm how wikis
are finding their way into organizations. This paper focuses on
requirements for analysis tools for corporate wikis. Corporate
wikis differ from their grow-up counterparts such as Wikipedia.
First, they tend to be much smaller. Second, they require analysis
to be customized for their own domains. So far, most analysis
tools focus on large wikis where handling efficiently large bulks
of data is paramount. This tends to make analysis tools access
directly the wiki database. This binds the tool to the wiki engine,
hence, jeopardizing customizability and interoperability. However,
corporate wikis are not so big while customizability is a desirable
feature. This change in requirements advocates for analysis tools
to be decoupled from the underlying wiki engines. Our approach
argues for characterizing analysis tools in terms of their abstract
analysis model (e.g. a graph model, a contributor model). How this
analysis model is then map into wiki-implementation terms is left
to the wiki administrator. The administrator, as the domain expert,
can better assess which is the right terms/granularity to conduct
the analysis. This accounts for suitability and interoperability
gains. The approach is borne out for HistoryFlow, an IBM tool
for visualizing evolving wiki pages and the interactions of multiple
wiki authors.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques;

D.2.12 [Software Engineering]: Interoperability; H.5.3 [Information

Interfaces and Presentation]: Group and Organization Interfaces—
Collaborative computing

General Terms

Human Factors, Management, Design

Keywords

MDE, Information visualization, Wiki, interoperability, analysis
tools, web 2.0, collaboration, visualization, model-driven

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WikiSym *10 July 7-9, 2010, Gdarisk, Poland

Copyright 2010 ACM 978-1-4503-0056-8/10/07 ...$10.00.

1. INTRODUCTION

Methods for wiki analysis have been proposed along four
perspectives [15]: social perspective (who knows who), knowledge
perspective (who knows what), information perspective (what
refers to what), and temporal perspective (what was done before).
To this end, distinct tools are available: Sonivis [9], Wiki Explorator
[11], Sioc MediaWiki [8], WikiTracer [12], HistoryFlow [29, 30],
to name a few. Most tools focus on large wikis such as Wikipedia
where efficient handling of large bulk of data is key. This forces
a tight coupling between the tool and the underlying wiki engine
(e.g. MediaWiki) so that the terms of analysis (e.g. nodes, edges)
tend to be coupled to how these notions are realized in the wiki
(e.g. wiki pages, wiki users). Hence, it is not uncommon for tools
to bound domain concepts to wiki notions. If the tool binds nodes
to wiki articles then, analysts are prevented from using this tool to
study other wiki concepts where nodes could have stood for other
notions (e.g. wiki users, revisions, etc).

This binding can be justified on an efficiency basis, specially
when facing large wikis. However, not all wikis are so large.
Indeed, wikis are being massively adopted in small-and-medium
organizations according to the Intranet 2.0 Global Survey report
[7]: 46% of the respondent companies were using wikis. Our
premise is that this new crop of wikis is characterized by (1)
being of a smaller size that their Wikipedia-like predecessors, and
(2) analysis requirements being domain-specific. These premises
would imply the removal of our previous conjecture for large wikis,
and hence, a pressure to make explicit the analysis model for these
tools (rather than being bound to its realization in a concrete wiki
engine).

This paper advocates for making wiki analysis tools “model
aware”. That is, tools are characterized in terms of their abstract
analysis models (e.g. a graph model, a contributor model, a
collaboration model). How this analysis model is then map into
wiki-implementation terms is left to the wiki administrator who, as
the domain expert, can better assess which is the right granularity to
conduct the analysis. This approach is illustrated for HistoryFlow
[29, 30].

HistoryFlow is a tool for visualizing dynamic, evolving
documents and the interactions of multiple collaborating authors.
In its current implementation, HistoryFlow is being used to
visualize the evolutionary history of wiki pages on Wikipedia. This
assumption is engineered in the tool itself. For instance, you can
feed HistoryFlow with the URL of a Wikipedia page to visualize
the evolution of this page’s content. The subject of analysis is then
a wiki page, specifically, how users make a wiki page evolve.

However, other useful scenarios can be envisaged for HistoryFlow.
Let’s consider the use of wikis for collaboratively capturing system
requirements [20]. Wikis can collect software requirements from

ontents” from 01ProU:

“Contents”

01ProUseCasel_3 group N inchivicual

SPACING @ o]

Figure 1: Standard case: useCase x stakeholder. These dimensions match the granularity level at which content is captured at the
wiki. That is, wiki pages stand for use cases whereas wiki users represent stakeholders.

the distinct stakeholders in different projects. Stakeholders become
wiki users whereas use cases (a common mechanism for capturing
system requirements) are realized as wiki pages. In this scenario,
HistoryFlow can serve to analyze the evolution and contribution
of the distinct stakeholders to the use cases. Nevertheless, the
usefulness of HistoryFlow does not stop here. It can also be
of interest to monitor the evolution of the whole project (which
encompasses a set of wiki pages), and not just its individual use
cases (a single wiki page). Likewise, the contribution can be
assessed based on the stakeholders’ departments rather than on a
stakeholder basis (e.g. to see the engagement of the department
in a project). What has changed is the abstraction level at
which the analysis is conducted. Rather than thinking in terms
of wiki users and wiki pages, HistoryFlow becomes a tool for
visualizing “contributors” and “subject of contributions”. The
most straightforward mapping between these abstract notions and
the wiki realization is the one natively supported by HistoryFlow:
contributor = wiki user; subject of contribution = wiki page.
However, wiki users and wiki pages could not always provide the
right granularity for the analysis. Coarser-grained or finer-grained
analysis could be needed. And HistoryFlow could have been used
in those cases as long as the terms of the analysis would have not
been hardwired.

This approach implies a trade-off between efficiency and
suitability. The former refers to the indirection cost: wiki data is
first converted into a model, and next, this model feeds the tool.
For large wikis, this cost is prohibitive. Notice however, that most
wikis are by far less large than Wikipedia, and hence, this cost
could pay-off in terms of both suitability and interoperability. The
former refers to the appropriateness of the tool’s functions. Model-

aware tools facilitate to tune the model for the analysis at hand.
Additionally, interoperability refers to the ability to exchange and
use information from different systems to enable them to operate
effectively together. In our context, interoperability permits domain
experts to easily switch between analysis tools so that the very same
wiki data can be visualized and measured through distinct tools.
The rest of this paper is organized as follows. Section 2 outlines
HistoryFlow as a representative of wiki analysis tools. Section
3 describes the approach followed to make it model aware. The
claimed advantages of suitability and interoperability are next
addressed in Sections 4 and 5, respectively. Section 6 recaps the
trade offs of this approach. Related work and conclusions end the

paper.

2. THE CASE OF HISTORYFLOW

History Flow [29, 30] is a tool for visualizing evolving wiki
pages and the interactions of multiple wiki authors. As an example,
consider the use of wikis for collaboratively capturing system
requirements [20]. Wikis can collect software requirements from
the distinct stakeholders in different projects. Stakeholders become
wiki users whereas use cases (a common mechanism for capturing
system requirements) are realized as wiki pages. In this scenario,
HistoryFlow can serve to analyze the evolution and contribution of
the distinct stakeholders to use cases.

Figure 1 shows the HistoryFlow visualization. Vertical axes
stand for page versions whereas colors represent stakeholders (i.e.
wiki users). HistoryFlow “connects text that has been kept the
same between consecutive versions; in other words, it connects
corresponding segments on the lines representing versions. Pieces

Lsers

H wiki
= title : EString

subjects |, 0.*
H subjectOfContribution
o fitle ; EString

1.1 contributiony = dgtea EString

0.~ |_E Contributor
= name : EString
= email @ EString
1.1

. L
contributor

contributions |0..*
H contribution

= editions ; EInt

di ubject
O yisits ¢ EInt

0. = text: EString
= camment : EString

Figure 2: The HistoryFlow analysis (meta) model

of text that do not have correspondence in the next (or previous)
version are not connected and the user sees a resulting "gap" in
the visualization; this happens for deletions and insertions”. This
rendering permits to conduct a two-dimensional analysis, where
the granularity is set as pages x authors. (hereafter referred to
as the “base granularity”). This base granularity is favored by
HistoryFlow in the sense that is engineered in the tool itself (e.g.
you can feed HistoryFlow with the URL of a Wikipedia page to
visualize the evolution of this URL’s content). This partially stems
from analysis being conducted for large wikis (Wikipedia is a case
in point) where tight coupling between the wiki engine and the
analysis tool accounts for efficiency.

However, wikis are being used for intra-organization collaborative
content production [31]. For the purpose of this work, the
implications are twofold. First, this scenario exhibits much smaller
wikis (at least compare with Wikipedia), and hence, relaxing
efficiency demands. Second, analysis is conducted in domain-
specific terms and so should it be the companion tools. For
instance, on our sample case of wikis being used for requirement
gathering, it can be of interest to monitor the evolution of the
whole project (which encompasses a set of wiki pages) and not
just its individual use cases (a single wiki page). Likewise,
the contribution can be assessed based on the stakeholders’
departments rather than on a stakeholder basis (e.g. to see the
engagement of departments in distinct projects).

Unfortunately, the terms of analysis tend to be hard-coded in the
tool itself, making very cumbersome to use these tools for scenarios
other than the base granularity. Therefore, rather than describing
HistoryFlow analysis in terms of wiki pages and wiki users it would
more convenient to abstract them into “subject of contribution”
and “contributor”, respectively, leaving to the user (which after
all is the domain expert) to decide both what is the subject of
contribution, and who is the contributor for the analysis at hand.
This basically involves making explicit the analysis model, and let
the user do the mapping between wiki artefacts (articles, categories,
templates, etc) and the primitives of this analysis model. In so
doing, HistoryFlow becomes a tool for visualizing “contributors”
and “subject of contributions” rather than “wiki users” and “wiki
pages”. Next section looks at the details.

- & O o] [1

~ [49 || search Pl

@uvl <« historyFlow » 08Tuning

Wy Organize

Folders v | Neme Type Size
. historyFlow - | T uningVerd b Tedt Document ke
| _de_recursos_comunes_en_Onekin |1 08TuningVerl txt Text Document 13KB
2muchStructure.png |_108TuningVer2 txt Text Document 13KB
. 2muchStructureWidth.png || 08TuningVer3 bt Text Document 16 KB
08_Reunion_Murcia |_108TuningVerd txt Text Document 3KB
08DeltaModel | 08TuningVer5 bt Text Document 9KB
. 08Desksonomy || 08TuningVerb tet Text Document 8KB
08DesksonomyProblemStatermnent.ppt __ 08TuningVer7 txt Text Document 10 KB
2 DBISEv || 08TuningVerd bt Text Document TKB

. 08JournalSCP_Article L Jindex File 1KB
08Participatory

. 085chema2Model

. 08Tuning - |4 mn »

Figure 3: HistoryFlow directory structure: each wiki article
accounts for a directory which contains a text file for each
revision.

can be obtained by externalizing data extraction out of analysis
tools so that the terms of analysis are not hardwired to their
wiki realization. So far, HistoryFlow focuses on visualizing how
wiki users contribute to wiki pages. However, this useful tool
can be leveraged by moving from wiki users and wiki pages to
the more abstract notions of “contributors” and “the subject of
contributions”, respectively. Who is a contributor and what is a
contribution is not hardwired into HistoryFlow but decided by the
analyst. The tool is then described in terms of an “analysis model”.

Figure 2 shows the analysis model for HistoryFlow. The
model makes explicit the terms in which HistoryFlow conducts the
analysis: the contributor and the subject of contribution. Ideally,
the analysis model should be described along a standard such as
UML or ECORE [27] (the Eclipse realization of OMG’s MOF
[23]). This would facilitate the interoperability with other tools.
However, this is seldom the case. Either the tool directly accesses
the wiki database or at best, it provides some input parameters.
For instance, besides providing the URL of a Wikipedia article,
HistoryFlow also admits to be fed from a set of files containing
page histories. Figure 3 provides an example. Each wiki article
to be analyzed accounts for a directory. This directory contains an
index, and a .zxt file for each revision made to this article. The index

3. MAKING HISTORYFLOW MODEL AWARE file holds an entry for each revision along the following format:

Broadly, analysis tools encompass three main endeavors: data
extraction + analysis algorithm + fancy interfaces. Distinct benefits

File name [tab] Author [tab] Comment [tab]
YYYY-MM-DD HH:mm: ss

1 main do
HistoryFlow::Wiki.all objects.each do |g]
g.subjects.each do |sub|
Scount = 0
$contribution = ""
sub.contributions.each do |con]|
compose_file(Helper.normalize (sub.title) + o+
8 con.subject.title + 'Ver' + fcount.to_s + '.txt') do
9 apply_rule :contributions, con
10 end
11 fcount += 1
12 end
13 compose file (Helper.normalize (sub.title) + /' + 'index') do
apply_rule :index, sub

rule 'contributions' do
1 from HistoryFlow::Contribution do

18 text do

19 println self.text

20 date = Time.parse(self.date).strftime("$Y-3m-3d 3H:3M:%5')

21 # File name [tab] Au or [tab] Comment [tab] YYYY-MM-DD HH:mm:s3s3
22 if self.contributor.nil?

23 contributor = 'anonymous'

24 else

25 contributor = self.contributor.name

& end

7 Scontribution = $contribution + self.subject.title +

"Ver#{Scount}.txt\t#{contributor}\t#{self.comment}\t#{date}\n"

rule 'index' do

from HistoryFlow::SubjectCfDiscussion do
32 text do
33 printin fcontribution

Figure 4: Mapping analysis primitives down to HistoryFlow
files (partial view) using RubyTL.

We can use this back door to feed HistoryFlow but leaving open
what directories and files stand for. Better said, directories are
the realization of the abstract notion “subject of contribution” as
defined in the ECORE model at Figure 2. However, what is a
subjectOfContribution is no longer in the realms of HistoryFlow
but it is for the domain expert to decide. The domain expert extracts
the data himself, and builds the HistoryFlow model. Next, this
model is mapped into the internal data structures of HistoryFlow
(i.e. directories and files). It is most important to note that this
transformation process should be transparent to the expert himself.
Mapping models to internal data structures should be encapsulated
as part of the tool! .

The good news is that transformation languages exist that
facilitate this task. MOFScript [22] or RubyTL [16] are two
examples. Figure 4 shows the mapping from the HistoryFlow
model down to HistoryFlow directories. The enactment of this
transformation generates the directories which are then consulted
by the HistoryFlow engine. Basically, the transformation generates
(see figure 4) a directory for each “subjectOfContribution” and
a .txt file for each “contribution” (lines 1-9). The content of the
index file is generated in the 'contributions’ rule (lines 16-29) and
stored in the “$contribution” variable (lines 27-28). The index file
is populated in the ’index’ rule (lines 30-33) with the information
of the previous rule.

From now on, HistoryFlow becomes model aware, i.e. it can be
fed through an ECORE model. This accounts for suitability and
interoperability. Next sections delve into the details.

4. MODEL AWARENESS ACCOUNTS FOR
SUITABILITY

According to ISO9126, suitability is a functionality characteristic

I As we have no access to the internals of HistoryFlow, this process
is now explicit to end users who need to enact the transformation
themselves before using HistoryFlow. However, this shows the
feasibility of HistoryFlow to be directly fed through models.

=reuson v] page v] categorylinks v
dINT page_id INT d_from INT
revi
 page INT L* »page_namespace INT d_to VARQHAR(255)
rev_page
J;i ST » page_iitle Y ARCHAR(255) —
rev_text_i Zmae
CreE »page_restictons TINYBLOB
rev_comment TINYBLOE 1 piihiid >
& rev_user INT 1 + page_tounter
» rev_user_text V ARCHAR(255) ! > page_s_redirect TINYINT
o | > w
»rev_timestamp BINARY(14) 1 page_is_new TINYINT —
1] pagelinks v
rev_minor_edit TINYINT »page_random DOUBLE
rev_deleted TINYINT » page_touched BINARY (14) pl_from INT
rev_len INT . » page_latest INT pl_namespace INT
>rev_parent_id INT | | page_len INT pl_title VARCHAR(255)
- ! > >
- i
|
] L
‘*J] user v] templatelinks v
1 user_id INT 4_from INT
Text = > User_name VARCHAR({255) 4_namespace INT
oldid INT > user_redl_name VARCHAR(255) 1_titie VARCHAR(255)
old_ text MEDIUMBLCE user_password TINYBLOB =
+ old_fiags TINYBLOS user_newpassword TINYBLOB
> user_newpass_time BINARY(14)

user_email TINYTEXT

> user_options ELCE

> user_touched BINARY(14)

> user_token BINARY(32)
user_email_authenticated BINARY(14)
user_email_token BINARY(32)
user_email_oken_espires BINARY(14)
user_registration BINARY(14)
user_editcount INT

Figure 5: Partial view of MediaWiki database schema.

that refers to the appropriateness (to specification) of the functions
of the software. Models abstract from the concrete realization
of the model in a given setting. This permits users to map the
analysis model of the tool to their own terms. The mapping
natively provided by HistoryFlow is for “contributor” and “the
subject of contribution” to be realized as “wiki user” and “wiki
page”, respectively (referred to as the base granularity). However,
other granularities are now possible and this enhances HistoryFlow
suitability. Some examples follow.

Coarse-grained analysis. Wiki users can be grouped into
meaningful dimensions for the analysis, e.g. based on their
department, job status, income, background, etc. The contributor
is no longer a user but a department (e.g. user@marketing,
user@sales, etc) Likewise, wiki pages can conform to higher
order notions, e.g. if wiki pages stand for use cases, then the
analysis could be conducted in a project basis where a set of
wiki pages is analyzed together. The subject of contribution is no
longer a wiki page but a project realized as a set of wiki pages
(e.g. page@projectl, page@project2, etc). Figure 6 shows a
HistoryFlow visualization where user contributions are grouped
based on the user’s company. Notice that this company-based
figure is shaped like the user-based one in Figure 1 since the
evolution of the content is the same. However, color strips are
just three, providing a quick overview of the engagement of each
company in terms of their employees’ participation.

Fine-grained analysis. The wiki page can be too coarse grained.
In some cases, wiki pages exhibit some common structure that
can be explicitly captured through wiki templates. Commonly
cited advantages of wiki templates include: enforcing a uniform
layout, ensuring that all available relevant information is provided,
lack of information is made explicit, and easing comparison of
wiki pages. For our running example, wiki templates have been
proposed to collect information of the use cases [10]. The
semantics of use cases is captured in terms of impact (in terms of
audience or improvement of a series of aspects), required existing
standards, limitations know at this stage, expected problems for
implementation or deployment, or tools expected to implement
these recommendations. These template sections can then become
the focus of analysis rather than the whole use case (i.e the wiki

ontents” from 01ProU: I

“Contents”

01ProUseCasel_3 COLOR aroup Ao incivicuel

SPACING @

gramming]] -- §

Figure 6: Coarse grained granularity: usecase x company.

page). The analyst may be interested in assessing the contribution
of the “impact” section. That is, the subjectOfContribution is no
longer the wiki page but template sections (e.g. page#impact,
page#targetAudience).

The bottom line is that by making explicit the analysis model,
domain experts are able to tune the tool analysis (meta)model for
their own purposes. But this is not a free lunch. Model awareness
implies a stronger user involvement. Previously, HistoryFlow digs
directly into the wiki database. Now, HistoryFlow is fed through
an analysis model. This implies that the domain expert needs to
construct such an analysis model from the wiki database. This is
the topic of the next subsection.

4.1 Coming Up with the Analysis Model

The wiki database provides the raw material to build up
the analysis model. Figure 5 shows the database schema for
MediaWiki. “The contributor” can be obtained from a single tuple
in the user table or be subject to a more elaborate process. This
process is far from simple and this very fact vindicates the claim of
separating concept extraction from concept analysis, both complex
undertakings on their own right. So far, most tools embed both
processes. The good news is again that dedicated transformation
languages exist from model extraction (a.k.a. model harvesting).
Schemol [17] is a case in point.

Figure 7 shows a Schemol transformation that obtains a
HistoryFlow model out of MediaWiki database tuples. This

transformation accounts for “the base granularity”’. The transformation

starts from the top rule (line 1). This rule generates the “wiki”
element of the HistoryFlow model. This element is related with
“contributor” and “subjectOfContribution” through the “users”
and “subjects” relationships, respectively (see Figure 2). This rule

generates such links out of the tuples in the “page” and “user”
tables (lines 6-7). These assignments implicitly cause the triggering
of the “subjectOfContribution” and “contributor” rules. The
former leads to the creation of distinct “subjectOfContribution”
elements from the attributes of the “page” and “revision” tables
(lines 15-18). The filter restrict the mapping to those pages
whose name space is 0 which stands for articles (rather than
categories, templates or discussion pages) (line 12-13). Notice
how the population of “contributions” implicitly leads to create
“contribution” elements out of the “revision” table (line 20-27).
In this way, primitives of analysis are obtained from MediaWiki
tuples. Maintainability wise, the important point is that now this
mapping is explicit rather than being hard-coded in the tool itself.

Figure 8 shows a Schemol transformation for a coarser
granularity: articles are grouped based on the project they belong
to, whereas users are clustered based on their companies. Rule
“SubjectOfContribution” identifies the membership of projects
based on the project prefix (line 15-21). Rule “Contributor”
generates just three elements for companies A, B and C where
membership of wiki users is explicitly stated (lines 31-37). As for
“contributions”, versions in articles on a user basis, should now
be aggregated to obtain versions in projects caused by companies.
That is, contributions made on articles belonging to the same
project and conducted by users of the same company, should
now be regarded as contributions on the very same subject of
contribution. This requires some string processing before article-
user contributions (as stored on the MediaWiki database) can
become project-company contributions on the HistoryFlow model.
It is this complexity (and its flexibility companion) that vindicates
the fact of moving data extraction outside the tool realm. The
discussion section will delve into this issue.

rule "wiki'
from Database db
to HistoryFlow: :Wiki wiki
mapping
wiki.title = "HistoryFlow";
wiki.subjects = db.@Epage:;
wiki.users = db.Guser;
g end_rule
% rule 'subjectOfDiscussion'
10 from wikidb: :page page
11 to HistoryFlow::SubjectCfContribution subj

1o o R}

12 filter

13 page.page namespace == 0

14 mapping

15 subj.title = page.page_title;

16 subj.visits = page.page_counter;

1 subj.editions = page.@revision.count():
18 subj.contributions = page.@revision:

1% end rule

20 rule 'contribution'

21 from wikidb::revision rewvi

22 to HistoryFlow::Contribution cont
23 mapping

24 cont.date revi.rev_timestamp:

cont.text = revi.rev_text_id.old_text;
CONT.COomMment = revi.rev_comment;
cont.contributor = revi.rev user;

g end_rule

29 rule 'contributor'

from wikidb::user user

to HistoryFlow::Contributor cont

mapping
CONT.Name = USer.user_name;
cont.email = user.user email;
35 end_rule

Figure 7: Schemol transformation for the base granularity:
“article” and “wiki user” becomes “the subjectOfContribution”
and “the contributor”, respectively.

S. MODEL AWARENESS ACCOUNTS FOR
INTEROPERABILITY

Interoperability refers to the ability to exchange and use
information from different systems to enable them to operate
effectively together. In our context, interoperability permits domain
experts to easily switch between analysis tools so that the very
same data can be visualized and measured through distinct tools.
In the current panorama where measures and visualization of
wiki content and collaboration are intensively being explored,
interoperability permits to join forces among tools. Rising the
level of abstraction (through models) is a well-known approach to
facilitate interoperability. This section provides an example where
the HistoryFlow model can now be used to feed other tools, in
particular Cytoscape [26].

Cytoscape is a software for visualizing molecular interaction
networks and biological pathways. Plugins are available to extend
the base functionality with fancy utilities>. One of these plugins
is NetMatch [19]. NetMatch allows searching biological networks
for subcomponents matching a given network pattern.

Even though Cytoscape was designed for biological research, it
can be used for other kinds of complex networks. Wikis can be
complex networks. We can then map the HistoryFlow model to the
NetMatch graph model so that the very same data can be visualized
both a la HistoryFlow and a la Cytoscape. Such mapping
is described in Table 1. Specifically, “subjectOfContribution”,
“contributor” and “contribution” become nodes of different
types depicted as ellipses, diamonds and triangles, respectively.
Model relationships are turned into edges. The mapping is
straightforward, and it takes less than an hour to write the RubyTL
program counterpart.

Zhttp://chianti.ucsd.edu/cyto_web/plugins/index.php

1 rule 'wiki'

2 from Database db

to HistoryFlow: :Wiki wiki

mapping
wiki.title = "HistoryFlow";
wiki.subjects = db.@page;
wiki.users = db.Guser;

g end_rule

9 rule 'subjectCfDiscussion"

10 from wikidb::page page

11 to HistoryFlow::SubjectOfDiscussion subj

1z filter

13 page.page_namespace = 0

1 mapping

15 if page.title.startswith("01Fro")

16 subj.title ="01PFro";

17 else if page.title.startswith("02Pro")
18 subj.title = "02Pro";

19 else if page.title.startswith("03Pro")
20 subj.title = "03Pro";

21 P

22 subj.contributions = page.@revision;

3 end_rule

rule 'contribution'
end rule
rule 'contributor'
from wikidb::user user
9 to HistoryFlow::Contributor cont
mapping
if user.user name in ("Oscar"”, "Felipe", "Administrador”, "Gorka")
cont.name ="Company A"
else if user.user_name in ("Sandy", "Salva", "Maider")
cont.name = "Company B":
else if user.user_name in
cont.name = "Company C";

"Cristobal™, "Sara", "John")

Figure 8: Schemol transformation for a coarser granularity:
“project” and “company’ becomes “the subjectOfContribution”
and “the contributor”, respectively.

Now, the HistoryFlow model can be visualized along Cyftoscape.
Specifically, we can enjoy the benefits of using NetMatch to detect
collaboration patterns among contributors. Figure 9 (left handside)
depicts a NetMatch query that looks for subjectOfContributions
where Oscar, Maider and Gorka have contributed at any time. The
answer is shown at the right handside in Figure 9. A second
example is depicted in Figure 10. Now, subjectOfContributions
demand not only the common collaboration of Oscar, John and
Gorka but this collaboration being achieved sequentially. The
relationship between contributions indicate this temporal-ordering
constraint. The answer is shown as a subgraph in the right handside.
The expert can now click on any of these subgraphs to obtain more
details about the context and time where this pattern arises.

6. DISCUSSION

We advocate for externalizing data extraction from wiki analysis
tools by using a model-driven approach. Models should be the
primary representation for tools. Since they are not yet the primary
representation, an extra initial effort is needed to inject and extract
the tool data into a model. Figure 11 depicts the architecture. Wiki
data is moved to the target tool (e.g. HistoryFlow) by passing
through a pivot metamodel (i.e. the analysis model) enabling a
star architecture of transformations. Order of n transformations
(between the wiki engine and the pivot) are thus sufficient for
transforming to n tools, compared to the order of n? transformations
required in traditional point-to-point ad-hoc data extraction.

The approach decouples analysis model processing (e.g.
visualization) from analysis model population (e.g. how the
model is obtained). This accounts for the following benefits.
First, it facilitates separation of concerns. While coding analysis
algorithms requires a sound mathematical background, data
extraction demands programming skills. Second, decoupling
augments tool suitability since the analysis tool can now be used in

Graph element (Meta)Model element
Node Contributor
Node SubjectOfContribution
Node Contribution
Edge Contributor to Contribution
Edge Contribution to Contribution
Edge SubjectOfContribution to SubjectOfContribution
Edge Contribution to SubjectOfContribution

Table 1: Mapping between the (meta)model elements and the graph elements

 Cytoscape Desktop (New Session) pr— - e o)
FilepEcitm\iewpSeleciglspunimBlogig bl
RO I e m—cy Y |
|2 Network ['=-[-£p [#% | Results Panel |
/ IE3

ol 01Prd

[51 NetMotch Query Editor - OzcarMaiderGorkaTogethersi
Query Edit

Lweh# H e
aete I
Choose one: Oscar, Maider) (Gorka

[|

= Contribution) (Contribution) (Contribution

a Pass Query
toNethatch | (| = N

i
Ly
SubjectOfContribution \ .
Wl

Match Number Nodes Image

Oscar, Gorka,

Maider,

01PraoUseCasel(),
revl876, revlB79,
revl880

2 Oscar, Gorka,
Maider,
Cada herramienta \.\ -
para_su_uso:_util -
izacion_de_recurs .
o03_comunes_en One .‘

kin(), revl332,
revl334, revl33é

3 Oscar, Gorka,

[] Create a new child netwark.

|Nodes: 7 Edges: 6 Paths: 0 Loops: 0

Figure 9: NetMatch pattern query: in which subjectOfContributions have Oscar, Maider and Gorka work at anytime together?

scenarios other than those initially thought. Third, it enhances tool
interoperability by allowing the same model to be used by distinct
tools, or be extracted from wiki engines with different database
schemas.

On the downside, there exists an efficiency penalty due to the
indirection caused by first moving to a model rather than directly
obtaining the data from the wiki database. Notice that this cost is at
transformation time and not while working with the analysis tool.
Even though, this cost is enormous in the case of large wikis such
as Wikipedia. However, corporate wikis are not so large, and this
additional cost can be compensated by the gains in interoperability
and suitability.

Finally, we see as the main drawback, the additional effort
required for the domain expert to define appropriate mappings from
the wiki database to the analysis model (e.g. coding the Schemol
rules). So far, using HistoryFlow is just a question of providing the
URL of the article of interest. This is in contrast with the effort
of coding Schemol rules. But this is the penalty to be payed for
having the freedom to decide the subject of analysis. In the medium
run, mechanisms similar to those available for OnLine Analytical
Processing (OLAP) tools can alleviate this situation (e.g. graphical
tools, wizards, etc).

7. RELATED WORK

On the effort to depart from concrete wiki engines, our work
aligns with that of Ferreira et al. [18] where a wiki metamodel is
introduced for describing the structure of wikis for Requirements
Engineering (RE) where distinct “semantic links” are introduced
along the so-called semantic wikis [25]. Our work contributes to

%,
O}é&
-+ ®
o™
W
i ki 03 \5‘\
MediaWiki ez
Database HistoryFlow
Analysis CJ'IOI.
Model "/e,_.,,
/0,
o -l’b
TikiWiki ,{&& Cytoscape
Database

Figure 11: Analysis models as pivots to decouple wiki engines
from wiki analysis tools. .

H NetMatch Query Editor t i ':

o o) © Cytoscape Desktop (New Session) “ -

|

Query Edit

KRNI JIE°)

|| File Edit View Select Layout Plugins Help

EERARARBEB—____ [B]

Pactie 2] Network
Chase one:

ot
dada

eciOfContribulion

Contribution

R

[Nodes: 7 Edges: 8 Paths: 0 Loops: 0

= [& [m= | Resuts Panel
)

Match Number Nodes Image

Figure 10: NetMatch pattern queries: in which subjectOfContributions have Oscar, John and Gorka work sequentially together?

these efforts by providing a case study on the benefits of abstracting
for specific wiki engines, and the need for wiki standards that
permit a market of wiki utilities. Similarly, all work on describing
wikis as graphs (as an analysis model) is also of interest. Distinct
authors abstract wikis as graphs where e.g. nodes correspond
to wiki pages, and directed edges stand for hyperlinks among
them [13, 14, 32, 21]. Using this formalism, studies have been
conducted to provide different measures for the Wikipedia [32],
to see the temporal evolution of wikis [14], or the structural
similarities of complex networks using wikis as a test case [21].
Notice however that even here the syntax to express graphs can
vary. Popular graph specification languages include the Graph
Description Language (.gdl) [4], Graph Exchange Language (.gx/)
[6], GraphML (.graphml) [5] and DOT (.dot) [3].

On the other hand, the Web Engineering community is actively
supporting model-driven practices. There exists a series of
workshops on this topic (see http://mdwe2009.pst.ifi.Imu.de/), and
different experiences have been reported (refer to [24] for an
overview). Our work contributes to this area by abstracting
away into a platform-independent model (i.e. analysis model),
and addressing the extraction of analysis models out of wiki
databases. Furthermore, the MDE community is striving for getting
interoperability through the use of models as main assets[1].

The ATHENA Model-Driven Interoperability (MDI) Framework
[2] provides guidelines about how MDE approaches can be applied
in achieving interoperable enterprise software systems. As Sun et
al. [28] states “each specialized tool contributes to a crucial step
in the development process”, likewise the co-existence of distinct
tools (e.g. HistoryFlow, Cytoscape) will more likely be necessary
to assess the wiki collaboration process. Sun et al. [28] also
highlights benefits learned from applying model transformation to
the tool interoperability problem, such as separation of concerns
across the integration process and adaptability and extensibility in
defining new tools, among others.

8. CONCLUSIONS

Corporate wikis tend to be smaller than their Wikipedia-like
predecessors. Analyzing the use and content of these corporate
wikis can shed light on how the organization works. However, the
terms of analysis tend to be domain dependent. Wiki articles and
wiki users can stand for different realities within the organization.
And analysis is to be conducted in terms of the domain, rather
than in terms of how this domain is captured by the wiki platform.
To this end, this paper introduces an indirect approach where the
analysis tool is characterized through an analysis model. Then,
it is up to the wiki administrator to map wiki terms into domain
primitives. The approach is illustrated for HistoryFlow.

Future work includes to enrich analysis with data coming from

other sources besides the wiki itself. Unlike Wikipedia-like cases,
corporate wikis are not isolated islands but part of the Information
System infrastructure of the organization. Multi-dimensional
analysis of wiki data could then become possible.

Acknowledgments

This work is co-supported by the Spanish Ministry of Education,
and the European Social Fund under contract TIN2008-06507-
C02-01/TIN (MODELINE), and the University of the Basque
Country under contract U07/09. Puente has a doctoral grant from
the Spanish Ministry of Science & Education.

9. REFERENCES

[1] Architecture-Driven Modernization (ADM). Online at
adm.omg.org.

[2] ATHENA (MDI) Framework. Online at
www.modelbased.net/mdi/index.html.

[3] DOT. Online at www.graphviz.org/doc/info/lang.html.

[4] GDL. Online at www.aisee.com/gdl/nutshell.

[5] GraphML. Online at graphml.graphdrawing.org/index.html.

[6] GXL. Online at xml.coverpages.org/gxl.html.

[7] Intranet 2.0 Global Survey. Online at
intranetblog.blogware.com/blog/
archives/2009/5/15/4187339.html.

[8] Sioc MediaWiki. Online at ws.sioc-project.org/mediawiki/.

[9] Sonivis. Online at www.sonivis.org/.

[10] W3C Use Case Template. Online at
www.w3.org/egov/wiki/Use_Case_Template.

[11] Wiki Explorator. Online at
www.kinf.wiai.uni-bamberg.de/mwstat/.

[12] Wiki Tracer. Online at wikitracer.com/.

[13] A.Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A.Tomkins, and J. L. Wiener.
Graph Structure in the Web. Computer Networks, 2000.

[14] L. Buriol, C. Castillo, D. Donato, S. Leonardi, and
S. Millozzi. Temporal Analysis of the Wikigraph. In Web
Intelligence, USA, 2006. IEEE Computer Society.

[15] K. M. Carley. Dynamic Network Analysis. In Dynamic
Social Network Modeling and Analysis: Workshop Summary
and Papers, 2004.

[16] J. S. Cuadrado, J. G. Molina, and M. M. Tortosa. RubyTL: A
Practical, Extensible Transformation Language. In
ECMDA-FA, 2006.

[17] Oscar Diaz, Gorka Puente, Javier Luis Cénovas Izquierdo,
and Jesids Garcia Molina. Harvesting Models From Web 2.0
Application Databases. Software and Systems Modeling
(SOSYM), Model-Driven Web Engineering (Theme Issue),
2010. Pending Revision.

[18] D. Ferreira and A. Rodrigues da Silva. An Enhanced Wiki
for Requirements Engineering. In SEAA, 2009.

[19] A.o Ferro, R. Giugno, G. Pigola, A. Pulvirenti, D. Skripin,
G. D. Bader, and D. Shasha. Netmatch: a cytoscape plugin
for searching biological networks. Bioinformatics, 2007.

[20] Panagiotis Louridas. Using wikis in software development.
IEEE Softw., 2006.

[21] A. Mehler. Structural Similarities of Complex Networks: a
Computational Model by Example of Wiki Graphs. Applied
Artificial Intelligence, 2008.

[22] J. Oldevik, T. Neple, R. Grgnmo, J. @. Aagedal, and
Arne-Jgrgen Berre. Toward standardised model to text
transformations. In ECMDA-FA, 2005.

[23] OMG. MetaObject Facility (MOF) Specification, January
2006. Online at www.omg.org/spec/MOF/2.0/PDF/f.

[24] G. Rossi, O. Pastor, D. Schwabe, and L Olsina, editors. Web
Engineering: Modelling and Implementing Web
Applications. Springer, 2008.

[25] S. Schaffert, F. Bry, J. Baumeister, and M. Kiesel. Semantic
Wikis. IEEE Software, 2008.

[26] P Shannon, A Markiel, O Ozier, N S Baliga,] T Wang,

D Ramage, N Amin, B Schwikowski, and T Ideker.
Cytoscape: a Software Environment for Integrated Models of
Biomolecular Interaction Networks. Genome Research, 13,
2003.

[27] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley, 2008.

[28] Y Sun, Z Demirezen, Fc Jouault, R Tairas, and J Gray. A
Model Engineering Approach to Tool Interoperability. In
SLE, 2008.

[29] F. B. Viégas, M. Wattenberg, J. Kriss, and F. van Ham. Talk
before you type: Coordination in wikipedia. In HICSS, 2007.

[30] F. B. Viégas, M.n Wattenberg, and K. Dave. Studying
Cooperation and Conflict Between Authors With History
Flow Visualizations. In CHI, 2004.

[31] Christian Wagner and Ann Majchrzak. Enabling
customer-centricity using wikis and the wiki way. J. Manage.
Inf. Syst., 06-7.

[32] T. Zesch and I. Gurevych. Analysis of the Wikipedia
Category Graph for NLP Applications. In NAACL-HLT,
2007.

