
Design and Implementation of the Sweble Wikitext Parser:
Unlocking the Structured Data of Wikipedia

Hannes Dohrn
Friedrich-Alexander-University

Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

+49 9131 85 27621
hannes.dohrn@cs.fau.de

Dirk Riehle
Friedrich-Alexander-University

Erlangen-Nürnberg
Martensstr. 3, 91058 Erlangen, Germany

+49 9131 85 27621
dirk@riehle.org

ABSTRACT
The heart of each wiki, including Wikipedia, is its content.
Most machine processing starts and ends with this content.
At present, such processing is limited, because most wiki en-
gines today cannot provide a complete and precise represen-
tation of the wiki’s content. They can only generate HTML.
The main reason is the lack of well-defined parsers that can
handle the complexity of modern wiki markup. This applies
to MediaWiki, the software running Wikipedia, and most
other wiki engines.
This paper shows why it has been so difficult to develop

comprehensive parsers for wiki markup. It presents the de-
sign and implementation of a parser for Wikitext, the wiki
markup language of MediaWiki. We use parsing expres-
sion grammars where most parsers used no grammars or
grammars poorly suited to the task. Using this parser it is
possible to directly and precisely query the structured data
within wikis, including Wikipedia.
The parser is available as open source from http://sweble.

org.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Syntax ; D.3.4 [Programming Languages]: Pro-
cessors—Parsing ; F.4.2 [Mathematical Logic and For-
mal Languages]: Grammars and Other Rewriting Sys-
tems—Parsing ; H.4 [Information Systems Applications]:
Miscellaneous

General Terms
Design, Languages

Keywords
Wiki, wikipedia, wiki parser, parsing expression grammar,
PEG, abstract syntax tree, AST, WYSIWYG, Sweble.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym’11, October 3-5, 2011, Mountain View, CA, USA.
Copyright 2011 ACM 978-1-4503-0909-7/11/10 ...$10.00.

1. INTRODUCTION
The content of wikis is being described using specialized

languages, commonly called wiki markup languages. Despite
their innocent name, these languages can be fairly complex
and include complex visual layout mechanisms as well as full-
fledged programming language features like variables, loops,
function calls, and recursion.

Most wiki markup languages grew organically and with-
out any master plan. As a consequence, there is no well-
defined grammar, no precise syntax and semantics specifica-
tion. The language is defined by its parser implementation,
and this parser implementation is closely tied to the rest of
the wiki engine. As we have argued before, such lack of lan-
guage precision and component decoupling hinders evolution
of wiki software [12]. If the wiki content had a well-specified
representation that is fully machine processable, we would
not only be able to access this content better but also im-
prove and extend the ways in which it can be processed.

Such improved machine processing is particularly desir-
able for MediaWiki, the wiki engine powering Wikipedia.
Wikipedia contains a wealth of data in the form of tables
and specialized function calls (“templates”) like infoboxes.
State of the art of extracting and analyzing Wikipedia data
is to use regular expressions and imprecise parsing to retrieve
the data. Precise parsing of the Wikitext, the wiki markup
language in which Wikipedia content is written, would solve
this problem. Not only would it allow for precise querying,
it would also allow us to define wiki content using a well-
defined object model on which further tools could operate.
Such a model can simplify programmatic manipulation of
content greatly. And this in turn benefits WYSIWYG (what
you see is what you get) editors and other tools, which re-
quire a precise machine-processable data structure.

This paper presents such a parser, the Sweble Wikitext
parser and its main data structure, the resulting abstract
syntax tree (AST). The contributions of this paper are the
following:

• An analysis of why it has been so difficult in the past
to develop proper wiki markup parsers;

• The description of the design and implementation of a
complete parser for MediaWiki’s Wikitext;

• Lessons learned in the design and implementation of
the parser so that other wiki engines can benefit.

While there are many community projects with the goal to
implement a parser that is able to convert wiki markup into

72

an intermediate abstract syntax tree, none have succeeded
so far. We believe that this is due to their choice of gram-
mar, namely the well-known LALR(1) and LL(k) grammars.
Instead we base our parser on a parsing expression grammar.
The remainder of the paper is organized as follows: Sec-

tion 2 discusses related work and prior attempts to base a
parser on a well-defined grammar. In section 3 the inner
workings of the original MediaWiki parser are explained.
Afterwards, we summarize the challenges we identified to
implementing a parser based on a well-defined grammar.
Section 4 discusses our implementation of the Sweble Wi-
kitext parser. We first set out the requirements of such a
parser, then discuss the overall design and the abstract syn-
tax tree it generates. Finally, we give specific details about
the implementation. Section 5 discusses the limitations of
our approach and section 6 presents our conclusion.

2. PRIOR AND RELATED WORK

2.1 Related and prior work
The need for a common syntax and semantics definition

for wikis was recognized by the WikiCreole community ef-
fort to define such a syntax [2, 3]. These efforts were born
out of the recognition that wiki content was not interchange-
able. Völkel and Oren present a first attempt at defining a
wiki interchange format, aimed at forcing wiki content into
a structured data model [26]. Their declared goal is to add
semantics (in the sense of the Semantic Web) to wiki con-
tent and thereby open it up for interchange and processing
by Semantic Web processing tools.
The Semantic Web and W3C technologies play a crucial

role in properly capturing and representing wiki content be-
yond the wiki markup found in today’s generation of wiki
engines. Schaffert argues that wikis need to be“semantified”
by capturing their content in W3C compatible technologies,
most notably RDF triples so that their content can be han-
dled and processed properly [16]. The ultimate goal is to
have the wiki content represent an ontology of the under-
lying domain of interest. Völkel et al. apply the idea of
semantic wikis to Wikipedia, suggesting that with appropri-
ate support, Wikipedia could be providing an ontology of
everything [25]. The DBpedia project is a community effort
to extract structured information from Wikipedia to build
such an ontology [4].
All these attempts rely on or suggest a clean syntax and

semantics definition of the underlying wiki markup without
ever providing such a definition. The only exception that
we are aware of is our own work in which we provide a
grammar-based syntax specification of the WikiCreole wiki
markup [12]. In this work, we not only provide a syntax
specification [11] but also an external representation format
using XML as well as matching processing tools and speci-
fications [13].

2.2 Prior parser attempts
There have been numerous attempts at implementing a

new parser specifically for MediaWiki, and some of these
have taken a clean approach with a grammar-based syntax
specification [21]. As we argue later in this article, the cho-
sen meta-languages fail to cope with the complexity of Wi-
kitext. Our own choice of a PEG-based syntax specification
overcomes these problems.

Figure 1: MediaWiki processing pipeline.

Most of the alternative parsers we are aware of use ei-
ther LALR(1) or LL(k) grammars to define Wikitext. Oth-
ers are hand-written recursive-descent parsers. Two promi-
nent examples are the parsers used by DBpedia [4] and the
parser used by AboutUs [1]. Both parsers are actively in
use and under development by their projects. While the
DBpedia parser is a hand-written parser that produces an
AST, the AboutUs parser is a PEG parser that directly ren-
ders HTML. To our knowledge, both parsers are not feature
complete. Especially the AboutUs parser is promising in its
ability to cope with Wikitext syntax, but does not produce
an intermediate representation like an AST.

3. WIKITEXT AND MEDIAWIKI
The MediaWiki software grew over many years out of Clif-

ford Adams’ UseMod wiki [20], which was the first wiki
software to be used by Wikipedia [24]. Though the first
version of the software later called MediaWiki was a com-
plete rewrite in PHP, it supported basically the same syntax
as the UseMod wiki.

By now the MediaWiki parser has become a complex soft-
ware. Unfortunately, it converts Wikitext directly into HTML,
so no higher-level representation is ever generated by the
parser. Moreover, the generated HTML can be invalid. The
complexity of the software also prohibits the further devel-
opment of the parser and maintenance has become difficult.

Many have tried to implement a parser for Wikitext to ob-
tain a machine-accessible representation of the information
inside an article. However, we don’t know about a project
that succeeded so far. The main reason we see for this is the
complexity of the Wikitext grammar, which does not fall in
any of the well-understood categories LALR(1) or LL(k).

In the following two sections, we will first give an outline of
how the original MediaWiki parser works. Then we present
a list of challenges we identified for writing a proper parser.

3.1 How the MediaWiki parser works
The MediaWiki parser processes an article in two stages.

The first stage is called preprocessing and is mainly involved
with the transclusion of templates and the expansion of the
Wikitext. In the second stage the actual parsing of the now
fully expanded Wikitext takes place [23]. The pipeline is
shown in figure 1.

Transclusion is a word coined by Ted Nelson in his book
“Literary Machines” [14] and in the context of Wikitext
refers to the textual inclusion of another page, often called
a template, into the page which is currently being rendered.
The whole process works similar to macro expansion in a
programming language like C. The term expansion describes
the process of transclusion and the evaluation or substitu-
tion of so-called parser functions, tag extensions and vari-
ables. These three syntactic elements of Wikitext all basi-
cally trigger the evaluation of a function which is defined
outside the content of the wiki. Usually these functions are
either built into the original MediaWiki software or provided
by extensions to the MediaWiki software. The result of such
an evaluation is again Wikitext which is then embedded into
the page that is currently being rendered. An example for a
parser function and its evaluation is the substitution of the

73

Figure 2: Preprocessing in the MediaWiki parser.

Wikitext “{{lc:string}}” with the text “string”, where all
characters in string are replaced by their lower-case variant.
The process of preprocessing is illustrated in figure 2.
The parsing is realized as a sequence of distinct process-

ing steps, each of which takes the current representation and
applies a transformation to it (e.g. turns four dashes at the
beginning of a line into an <hr/> tag). This way, the input
is gradually morphed from the Wikitext representation into
an HTML representation. Since no higher-level represen-
tation is built during this process, the Wikitext is directly
transformed into HTML, the process is also described as
“rendering” in figure 1. Table 1 gives a brief overview of
some important elements of Wikitext.

Internal link (pointing to a
page inside the same wiki)

[[target page|Link text]]

External link [http://example.com Link text]

A horizontal line (<hr />) ----

Table with four cells on two
rows

{| class="wikitable"
| Cell 1.1 || Cell 1.2
|-
| Cell 2.1 || Cell 2.2
|}

An itemization list * Item 1

* Item 2

Preformatted text (<pre>,
mind the space at the be-
ginning of each line)

This text is rendered using
a fixed font and spaces are
preserved.

Table 1: Some elements of MediaWiki’s Wiki-
text [22].

The individual transformations are usually line-based. For
example, although a table is a block-level element that can
span many lines of Wikitext, its individual syntactic atoms
are only recognized at the beginning of a line. Therefore,
many processing steps start by breaking up the source by
lines. The second step involves recognition of syntactic atoms
(like table start “{|” or internal link start “[[”). Some syn-
tactic elements (e.g. external links) are recognized as a
whole using regular expressions while others (e.g. tables) are
recognized step by step using algorithms which scan through
the Wikitext or through individual lines of the Wikitext. Fi-
nally, once an element of Wikitext has been recognized, it is
converted into its HTML counterpart. An incomplete list of
transformations performed by the original MediaWiki parser
is given in figure 3.

3.2 Challenges to parsing Wikitext
In our analysis of the original MediaWiki parser and the

development of our own implementation of a parser for Me-
diaWiki’s Wikitext, we identified the following major chal-
lenges to parsing Wikitext with conventional parsers:

1. The original MediaWiki parser will never reject any

Figure 3: Coarse draft of the processing steps in the
MediaWiki parsing stage.

input, which also translates to “every input is syntac-
tically correct”.

2. Syntactic elements are recognized one after another
in separate transformation steps, often not honoring
the scope of other syntactic elements. This leads to
wrong nesting in the generated HTML and allows the
recognition of elements which, by a strict parser, would
not have been recognized (see example 1).

Input Wikitext:

{|
| before [[target|link
| title]] after
|}

Resulting HTML:

<table><tr>
<td>

before <a ... href="target"> link
</td>
<td>

title after
</td>

</tr></table>

Example 1: A Wikitext link that is improperly spread
across two table cells will be transformed to invalid HTML.

3. The choice of some syntactic elements leads to severe
ambiguities (e.g. bold and italics apostrophes). In
order to remedy the situation, the original parser uses
heuristics to guess what the user might have meant.

Input Wikitext:

l’’’Encyclopédie’’
but three apostrophes also means ’’’bold’’’

Resulting HTML:

l’<i>Encyclopédie</i>
but three apostrophes also means bold

Example 2: An algorithm discovers all apostrophes on a
single line and, using a heuristic, decides which are real apos-
trophes and which are formatting markup.

4. There are no unique prefixes in Wikitext which could
be used to unambiguously identify certain syntactic
elements. In Wikitext, an opening bracket is the prefix
of a bracketed external link but can as well appear
anywhere else. Therefore, whether a prefix is really
a prefix or just text can only be decided if the whole
element has been recognized.

74

5. As seen in example 1, the MediaWiki software gener-
ates wrongly nested HTML. Furthermore, the original
parser does not enforce HTML-like semantics, which
determine what constitutes valid nesting of different
elements. Consequently, the HTML produced by the
parser can be ambigious and it eventually depends on
an HTML tidier or the browser’s rendering engine how
wrongly nested HTML elements will be rendered.

6. The individual processing steps often lead to unex-
pected and inconsistent behavior of the parser. For
example, lists are recognized inside table cells. How-
ever, if the table itself appears inside a framed image,
lists are not recognized. The behavior of MediaWiki
requires productions of a grammar to take their con-
text into account and check, whether the table itself
appears inside a link.

7. Other unpredictable behavior often surfaces due to the
complexity of the original parser.

4. THE SWEBLE WIKITEXT PARSER
In the following section we first lay out the requirements

that we imposed on our implementation of a parser for Me-
diaWiki’s Wikitext. Following is a discussion about the de-
sign decisions we made to overcome the problems discussed
in the previous section. We then give an overview of the
AST data structure. Finally, we present specifics of our im-
plementation.

4.1 Requirements for the parser
We identified the following requirements for our parser:

• Is grammar-driven and therefore provides a formal spe-
cification of Wikitext.

• Transforms Wikitext into a well-defined machine-read-
able structure, i.e. an abstract syntax tree (AST).

• Doesn’t fail on any input, no matter how“syntactically
incorrect” it is. In a best effort approach in recogniz-
ing syntactically wrong input, the parser continues to
parse the rest of the input.

• The parsed representation can be converted back into
Wikitext. This requirement makes it possible for a
generated AST to be converted back into Wikitext
which matches the original input exactly.

• ASTs are limited in their ability to represent the struc-
ture of the input as they are tree-like (e.g. when it
comes to wrong nesting). Therefore, the conversion
must preserve the meaning inherent to the input as
best as possible.

• The parser should not resort to emitting syntax errors
instead of trying to interpret the input exactly like the
original parser does.

The Wikitext language is defined by the MediaWiki parser
itself. As a consequence, every string that is accepted by Me-
diaWiki’s parser is syntactically valid Wikitext. And since
MediaWiki’s parser accepts every possible input, there is
technically no incorrect Wikitext syntax.
Yet for individual elements of Wikitext, one still can say

whether they are syntactically correct, given that the Wiki-
text is expected to describe for example a bracketed external
link. Consider

[http://example.com]

vs.
[http://example.com].

Both strings are valid Wikitext, however, the second string
will not be interpreted as a bracketed external link by the
MediaWiki parser due to the whitespace in front of the URL.
Therefore, the first string is an example for valid bracketed
external link syntax, while the second string is not.

Accordingly, when one writes a parser for Wikitext, one
has to meet two requirements: First, the parser must never
reject any input and second, the parser has to recognize
the same elements which the original MediaWiki parser rec-
ognizes. While the first requirement is relatively simple to
achieve with a PEG, the second requirement is in some cases
hard to maintain.

4.2 Parser design
Looking at the complexities of Wikitext syntax, as we

did in section 3.2, it is clear that realizing a parser using a
LALR(1) or LL(k) grammar is difficult. While these gram-
mars are only a subset of context-free grammars, Wikitext
requires global parser state and can therefore be considered
a context-sensitive language. Writing a parser by hand is
also possible, however, since there is no definitive grammar
for Wikitext, writing a parser is an exploratory task. It
takes many iterations and therefore fast prototyping to ap-
proximate the behavior of the original MediaWiki parser.
Writing a parser by hand hinders fast prototyping.

Using the original MediaWiki parser as starting point is
also an option, however, that would violate the first require-
ment for a grammar-driven parser. Also the MediaWiki
parser is a very complex software by now and hard to evolve
and maintain.

In light of these problems, we decided to use a so-called
parsing expression grammar (PEG) as means to describe the
grammar of Wikitext.

Parsing expression grammars
Strong points of PEGs are the availability of syntactic pred-
icates and that they are scannerless. Further, PEGs unlike
LR and LL parsing algorithms are closed under composition
and therefore enable modularity. While GLR parsing algo-
rithms recognize all context free grammars, they return a
forest of parse trees for ambiguous grammars which is inef-
ficient if one knows that only one tree is correct [8]. One
key difference between LALR(1) or LL(k) and PEG gram-
mars is that PEGs use prioritized choices (e1/e2) instead of
alternatives (e1|e2). Prioritized choices are tested one after
another (in the given order) and the first successful match
is employed. This renders PEGs free of ambiguities.

Prioritized choices have their advantages as well as their
disadvantages. As different authors [7, 15, 17] argue, the
grammar will be free of ambiguities, but will it describe the
language the author intended? This question stems from
the problem of “prefix capture” [15]. Given the parsing ex-
pression ("["/"[[")[a-z], the input [[target will not be
matched. The first choice of ("["/"[[") matches, and the
parser will go on and try to recognize [a-z]. This fails on
the second “[” and the whole expression fails without recon-
sidering the second choice. While this is easy to fix in the
given example by exchanging the choices, it is difficult to
spot when several productions separate the captured prefix
and the point where a production fails.

75

Figure 4: The processing pipeline in the Sweble Wi-
kitext parser.

Another downside of PEG parsers is their performance
and memory consumption. PEG parsers trade memory for
performance but are still slower than the classic LALR(1)
parser [8, 15].
An in-depth explanation how we designed the PEG gram-

mar for the Sweble Wikitext parser is given in section 4.4.

Pipeline architecture
Our parser is composed of five stages: encoding validation,
preprocessing, expansion, parsing and postprocessing. The
pipeline is outlined in figure 4. The individual stages will be
explained in the upcoming sections.
A fact not illustrated in figure 4 are the two different repre-

sentations of a page used in the pipeline. One representation
is the Wikitext as found in a raw page itself and after dif-
ferent processing stages. The other representation of a page
is the AST. Where the different representations are used is
shown in figure 5.

Figure 5: The different types of data flowing through
the processing pipeline.

A problem that becomes visible in this illustration is the
conversion into an AST before the expansion stage and the
following conversion back intoWikitext before parsing starts.
While the preprocessor already recognized some syntactic
elements of Wikitext (e.g. comments, transclusions, etc.),
the parser would have to repeat the recognition of these el-
ements if they were just converted back into Wikitext after
expansion took place.
To avoid this duplication of work and the increased com-

plexity of the parser it entails, already recognized elements
of Wikitext will not be converted back into their Wikitext
equivalent but will be converted into parser entities. A
parser entity is a reference into a table external to the Wi-
kitext. The external table stores the AST representation of
the recognized element, while the Wikitext only contains a
reference into the table. When the parser hits a parser entity
in its input, the parser entity is looked up in the table and
the stored AST is inserted into the AST which the parser is
generating.

Stage 1: Encoding validation
Not all possible characters are allowed in Wikitext. Also,
to avoid the need for escaping the character used as prefix

for parser entities should be unique. On the other hand, we
don’t want to loose information by stripping illegal charac-
ters from the input. Especially characters from the private
use planes of the Unicode standard [19] might also be used
by other applications to embed information into Wikitext.
To guarantee that this information is not lost, the encoding
validation step wraps illegal characters into parser entities.
This way, characters that might be harmful to the process-
ing pipeline, especially to the parsing stage, are safely locked
away and can be restored after postprocessing.

Characters considered illegal or harmful in encoding vali-
dation are:

• non-characters and incomplete surrogates [19],

• control characters
[U+0000−U+0020) \ {U+0009,U+000A,U+000D},

• character U+007F and

• characters from the private use planes [19].

Stage 2: Preprocessing
The stage of preprocessing prepares the Wikitext for exan-
sion and involves the tasks of recognizing XML-like com-
ments, redirect links, transclusion statements, tag exten-
sions and conditional tags.

Redirect links are found at the beginning of a page and
cause the wiki to redirect to another page when viewed.
Tag extensions are XML elements that are treated simi-
lar to parser functions or parser variables. XML elements
whose names are not know to the parser as tag extensions are
treated as text. Finally, the conditional tags <noinclude>,
<includeonly> and <onlyinclude> decide if a part of the
Wikitext will be excluded from further processing depend-
ing on whether the page is preprocessed for direct viewing
or if the page is preprocessed for transclusion into another
page.

The preprocessing stage emits an AST which consists mostly
of text nodes. The only other elements are either redirect
links, transclusion nodes or the nodes of tag extensions.

Stage 3: Expansion
If one builds a wiki engine which not only parses but also
renders pages from Wikitext, one has to insert one more
stage to the pipeline called expansion. While the pipeline
without the expansion stage is enough to recognize a single
page, pages in a MediaWiki are often built using templates,
magic words, parser functions and tag extensions [23]. In
order to resolve these entities into Wikitext, expansion has
to be performed after the preprocessing stage and before
the Wikitext is parsed, as illustraged in figure 6. However,
expansion is an optional stage. To use the AST in a WYSI-
WYG editor, one would leave out expansion to see the un-
expanded transclusion statements and parser function calls
in the original page.

Templates are pages that are transcluded into the Wiki-
text of the page that is being viewed. For example the Wiki-
text “{{Featured article}}” in a page will be replaced by
the contents of the page “Template:Featured article” (“Tem-
plate:” being an implicit namespace for transclusions). Pages
used as templates can themselves transclude other pages
which makes expansion a recursive process.

Once the expansion stage has finished, the entities rec-
ognized in the preprocessing stage have been (recursively)

76

Figure 6: Illustration of the expansion process as
implemented in our parser.

replaced by Wikitext. However, if the template for a trans-
clusion could not be found or the Wikitext contains refer-
ences to non-existing parser functions, the nodes for these
elements will remain in the expanded AST and will not be
replaced by Wikitext.

Stage 4: Parsing
Parsing is the stage in which formatting markup is recog-
nized. It is also the stage in which most of the challenges
to implementing a parser for Wikitext lie. However, before
parsing starts, the AST that has been generated in the pre-
processing stage and which was extended in the expansion
stage must be converted back into Wikitext.
The conversion back into Wikitext is straight forward for

text nodes. All other nodes are converted into parser enti-
ties. Once the AST is converted back into Wikitext, a PEG
parser analyzes the text and generates an AST capturing
the syntax and semantics of the wiki page. The details of
the PEG parser are exposed in section 4.4.

Stage 5: Postprocessing
Although we believe that a PEG parser is well suited for
most of the challenges found in Wikitext grammar, a single
PEG parser does not solve all hard problems. As a con-
sequence, we added one last stage after parsing: postpro-
cessing. As explained in section 4.4, the parsing stage does
not match XML opening and closing tags and it does not
properly analyze apostrophes for bold and italics. However,
the parsing stage does recognize the individual tags and the
apostrophes. The task of postprocessing then is to match
the tags to form whole elements and to analyze the apos-
trophes to decide, which of them are real apostrophes and
which have to be interpreted as bold or italics markup. The
assembly of paragraphs is also handled in postprocessing.

4.3 AST Design
An abstract syntax tree (or AST) is an n-ary tree that en-

codes the syntactic structure of a text (e.g. a Java program
or Wikitext). Individual syntactic elements are represented
by nodes and their children.
The AST we use in our parser implementation has three

dimensions:

• Each node can have either a fixed number of children
or a variable number of children. For example, the Sec-
tion node always has two children: The section head-
ing and the section body. The children are nodes of
type NodeList. A node of type NodeList has a vari-
able number of children and can contain, for example,
the elements that make up the heading or the section
body.

• Each node can have a fixed set of properties attached.
For example, StringContentNodes like Text always pro-

Figure 7: The AST representation of the image link
“[[File:Example.jpg|50px|Sunflower]]”.

vide the string property “content”. A node of type
Section always has an integer property called “level”
that indicates the level of the heading.

• Finally, nodes can have arbitrary attributes attached
to them. Attributes can be added and stripped any
time and are used to associate temporary information
with a node that is needed by the processing step cur-
rently working on the AST.

To enable easy access to the structured data contained in
the AST, we implemented XPath [27] queries on top of our
AST implementation using the Apache Commons JXPath li-
brary [18]. Using a simple query like //Section/title one
can extract all section titles from a page. Other possibilities
include the extraction of, for example, the name of the capi-
tal of a country from the respective article. This can be done
by retrieving the “capital” argument from the transclusion
statement of a so-called “Country Infobox” template.

Storing round-trip information
Usually, when parsing a document, one stores only the se-
mantically relevant portions of the document. These are
either coded implicitly in the tree data structure or explic-
itly in the content and attributes of individual tree nodes.
For example the brackets that indicate an internal link (“[[
· · ·]]”) are nowhere to be found in the AST. The same goes
for whitespace or XML comments if they are irrelevant to
the rendering of the document.

However, all this information is vital when the resulting
AST is to be used as underlying data structure for a visual
editor while direct manipulation of the Wikitext shall remain
an option. Or if the pages shall be stored as AST instead
of storing the original Wikitext. In this case, whitespace
and comments must not be discarded. Otherwise, once the
Wikitext is restored from the AST , the complete layout of
the original document would be destroyed to a point where
it will pose a threat to user acceptance.

In order to preserve formatting information in the AST,
a RtData (RountTrip Data) object is attached to each AST
node as attribute (see figure 7). RtData objects are arrays
with exactly n + 1 fields, where n is the number of chil-
dren the respective node has. For example, the ImageLink
node in figure 7 has two children (options and title) and its
RtData (attach as attribute “RTD”) has three fields. Each

77

field of the RtData array is itself an array and can contain
strings, characters or XML comments. In order to restore
the original Wikitext of a node, one visits the RtData ar-
ray and the children of that node in an interleaved manner.
First the data from the first RtData field is rendered, then
the first child of the node is rendered, then the second field
of RtData and so on. This process repeats recursively for
the children of each node. When finished, the Wikitext has
been restored and matches the original Wikitext.

4.4 Parser implementation
The entire software including the parser is written in Java.

The parser itself is generated from a PEG grammar using
the Rats! parser generator [9]. The encoding validation is
done using a lexer written in JFlex [10]. Postprocessing is
performed using so-called Visitors. The different renderers
are also realized as Visitors.
Visitors are instances of the Visitor software design pat-

tern [6] and help to separate the AST data structure from
the algorithms that operate on the data. The visitation of
an AST is a depth-first traversal of the tree.
In the following sections, we use the grammar specification

language used by R. Grimm in [8]. However, we omit imple-
mentation specific details like the data type of a production.
Each production has the form:

Nonterminal = e ;

Where e is an expression composed from the operators in
table 2.

Operator Description
’ ’ Literal character
" " Literal string
[] Character class
_ Any character
{ } Semantic action
(e) Grouping
e? Option
e∗ Zero-or-more
e+ One-or-more
&e And-predicate
!e Not-predicate
id : e Binding
e1 · · · en Sequence
e1/ · · · /en Ordered choice

Table 2: The operators supported by Rats! [8].

Overview of the PEG grammar
Our PEG grammar consists of modules for individual syn-
tactic elements like internal links or tables and one module,
the content module, which represents the glue between the
individual syntactic elements.
The following kinds of whitespace productions are defined:

Eof = !_ ; // EndOfFile
Eol = "\r\n" / "\r" / "\n" ; // EndOfLine
Space = ’ ’ / ’\t’ / ’\f’ ;
Ws = Space / Eol ; // Whitespace
Tp = XmlComment ; // Transparent
TpSpace = Tp / Space ;
TpWs = Tp / Ws ;

A special kind of whitespace is found in the various Tp
productions. Here not only whitespace in the literal sense
is captured but also XML comments. Comments were not
discarded by the preprocessor to allow a perfect reconstruc-
tion of the Wikitext from the AST. However, this makes

comments nontransparent to the parser. If a comment ap-
pears inside a syntactic atom like the prefix of an internal
link “[<!- · · · ->[”, the prefix will not be recognized by a
parsing expression that expects only the literal string “[[”.
However, making all rules aware of comments would clutter
up the grammar (and also the AST). Therefore, the user
of our parser is left with two choices: Strip comments af-
ter preprocessing and disrupt round-trip support or accept,
that comments will interrupt syntactic atoms.

Separating prose from wiki markup
Most of Wikitext content is prose interleaved with markup
tokens. To efficiently recognize the prose (or text) the Text
production consumes all text until it hits a character that
might constitute the prefix to a markup token:

Text = !TextStopperPrefix _ ;
TextStopperPrefix =

Eol / "=" / "|" / ":" / "[[" / "~~~" / ... ;

Consider the following two lines of Wikitext:

prefix[[target]]
http://example.com

Links can have prefixes whose form is determined by a reg-
ular expression that depends on the content language of a
wiki. A similar situation is given for the embedded URL. In
every wiki instance different sets of protocols can be allowed.
The problem is that the prefix and the protocol are already
consumed by the Text production for performance reasons.
Stopping at every character to test the regular expression
for link prefixes is expensive. As remedy we added special
productions to the InlineContent production:

InlineContent =
t:Text ’:’ p:UrlPath &{isUrl(t, p)}

{ /* makeUrl(t, p), crop(t) */ }
/ t:Text l:InternalLink

{ /* addPrefix(t, l), crop(t) */ }
/ Text
/ ’:’
/ !InlineContentStopper InlineContentAtom
/ !InlineContentStopper TextStopperPrefix ;

The choices printed in bold font assure that prefixes are
recognized and attributed to the respective link and that
URLs are recognized.

Best effort parsing
As stated earlier the parser must never fail on any input. To
assure this the syntactic elements subsumed under the In-
lineContentAtom production all have extra fall-back choices:

InlineContentAtom = Signature / InternalLink /
ExternalLink / Ticks / MagicWord / ... ;

InternalLink =
"[[" LinkTarget LinkOption* LinkTitle? "]]"

/ ’[’ ; // fall-back

By adding more elaborate fall-back choices which try to
parse content atoms with minor syntactical errors one can
inform the user about possible errors he might want to cor-
rect or even auto-correct these errors immediately. Other-
wise, the smallest possible prefix has to be consumed. In
the given example we must not consume “[[” in the fall-
back choice because a second “[” could be the prefix to a
bracketed external link.

78

Emulating MediaWiki’s scopes
In Wikitext not every element can appear and be recognized
in every scope. We describe three problems of scoping which
we solved in our grammar:

• Consider the following Wikitext:

[[target|... [http://example.com] ...]]

[[target|... [[target]] ...]]

[http://example.com ... [[target]] ...]

On each line a link appears inside the scope of another
link’s title. However, every nesting has a different ef-
fect when rendered. When an external link is embed-
ded in the title of an internal link, the external link
(in bold font) is not recognized. When embedding an
internal link in the title of another (otherwise syntacti-
cally correct) internal link, the enclosing internal link
is not recognized (in bold font). Finally, if an internal
link is embedded in the title of an external link, both
are recognized.

One solution would be to recognize all elements at first
and later analyze the AST to discover wrong nest-
ing. However, this leads to another problem: If, for
example, the enclosing link is reinterpreted as plain
text after discovering an internal link inside its ti-
tle, other parts of the affected Wikitext may need re-
interpretation as well:

[[target|
* item 1
* item 2
[[other link]]]]

Lists (in bold) are not recognized inside a link title.
However, in this case the enclosing link will not be
recognized once the other link (in red) is discovered
inside its scope. Consequently, the list has to be rec-
ognized as list after all and must not be treated as
plain text.

• Newline characters play a vital role in Wikitext. Con-
sider the following examples:

* Item 1 [[target|link
title]] still item 1

* Item 2 ...
 not item 2 any more

Lists usually terminate at the end of a line. However,
internal links can hide newline characters inside their
scope. As a result, the content of the first item con-
tinues on the next line. Other syntactic elements of
Wikitext cannot hide newline characters. The second
list item stops inside the element. The follow-
ing line is not part of the second list item any more.

Now consider the same situation but with a table as
surrounding element:

{| class="wikitable"
| Cell 1.1 || Cell 1.2
|-
| Cell 2.1 [[target|link

title]] || still cell 2.1
|}

Again the link contains a newline. However, unlike
lists, inline table cells can “see” into the scope of links

and can therefore discover otherwise hidden newline
characters. Inline table cells are cells which are termi-
nated with “||” and are followed by more cells on the
same line. Accordingly, the inline cell separator “||”
in the second row (in bold font) is not recognized as
such and “Cell 2.1” is treated as non-inline cell.

• Finally consider the following situation:

[[target|
{|
|
* item 1
* item 2
|}

Here an itemization list (in bold font) is found inside a
table cell and the table is part of a link title. Usually,
lists are allowed inside table cells. However, if the table
is part of a link’s title, in which lists are not recognized,
then the list is also not recognized in the table’s cells.
It follows, that the scope of an element has to take the
context into account in which the element appears.

We solve these problems using a global context stack.
Each context frame stores the active scope and a set of stick-
ing scopes. Consider the following simplified set of produc-
tions for a link:

InlineContentStopper = ICStopperInternalLink / ... ;

ICStopperInternalLink =
&{inScope(ILINK_TITLE)}("]]"/InternalLink) ;

InternalLink = "[[" &{accept(ILINK)} ... ;

stateful
LinkTitle =

{ enter(ILINK_TITLE); } ’|’ InlineContent* ;

The scope of the LinkTitle production is entered by pushing
a new context onto the global stack (done by the state-

ful modifier) and calling to the method enter. If a cer-
tain content atom is allowed in the currently active scope
is checked by the semantic predicate &{accept(. . .)}. The
accept method tests the given atom against the active scope
and the sticking scopes. Testing against the sticking scopes
makes a production aware of all surrounding scopes, not only
the immediate active scope.

Finally, the semantic predicate &{inScope(. . .)} tests
whether the InlineContent production should fail for a cer-
tain input because a token was discovered that terminates
the active scope. This also guarantees that an enclosing link
fails if another link is found inside its title. The inner scope
will terminate and return to the link production. However,
the link production does only expect the terminating “]]”,
not another internal link and thus fails.

To ensure linear-time performance PEG parsers use mem-
oization. However, the above set-up violates the functional
nature of memoization as it is realized by the Rats! parser
generator. To avoid unexpected behavior of the parser and
not disable memoization altogether we added extra produc-
tions to make memoization aware of global state changes.

Analyzing apostrophes
The analysis of apostrophes is done by the postprocessor.
The parser has already identified groups of apostrophes but
did not match them to form bold or italics formatting nodes.
We implemented a visitor that emulates the algorithm that
is used in the original parser.

79

First the visitor is performing a search for all apostrophes
in one line of Wikitext source. Performing this search on
an AST means to traverse the tree until one finds a text
node that contains a newline. However, newlines can also
appear in the discarded whitespace of an internal link and
in block-level elements like lists or tables. Since block-level
elements only start at the beginning of a line, they always
indicate a newline. Internal links on the other hand have
an extra property “hasNewline”, which is set to true if the
parser encountered any newlines in whitespace.
Once all apostrophes on one line have been found and

classified real apostrophes are converted to plain text while
markup apostrophes are converted to special XML tags and
their respective closing tags: <@i> and <@b>. These are then
matched by the following postprocessing step, in which the
scopes of XML elements are established.

Establishing the scope of XML elements
A pathological example, where it is hard to maintain the
original representation as found in the Wikitext, is wrong
nesting. Even if a parser recognizes wrong nesting, it could
not directly represent this in the resulting tree structure.
The MediaWiki parser recognizes elements even if they are
wrongly nested. And since the MediaWiki parser only trans-
forms Wikitext input into HTML, it can even represent
wrong nesting in the target language, as illustrated in ex-
ample 1.
It will be an HTML tidying step or the browser who will

eventually correct the nesting and decide how to render the
generated HTML. A corrected version of example 1’s HTML
will usually look like:

<table><tr>
<td>
before <a ... href="target">link

</td>
<td>
<a ... href="target">title after

</td>
</tr></table>

As one can see, the link has been closed in the first cell and
been re-opened in the second cell.
This problem generally applies to all elements of Wiki-

text that can be nested. However, we propose to not tol-
erate wrong nesting in some cases, while in other cases we
explicitly try to recognize the author’s intention and con-
vert wrong nesting into a valid tree structure. We further
propose the following distinction between these two cases:
For inline formatting elements with scope (bold and italics)
as well as for allowed XML elements, we try to correct er-
roneous nesting. All other elements of Wikitext have strict
nesting.
The consequences of wrong nesting of elements for which

strict nesting rules apply were discussed in section Emulating
MediaWiki’s scopes. In those cases our parser also issues
warnings to indicate, that strict nesting rules were violated
and that the meaning of the Wikitext might not have been
preserved exactly.
To fix wrong nesting, we implemented a two-staged pro-

cess. First the parser recognizes opening and closing tags
individually. Then, as second step in postprocessing, an al-
gorithm will analyze where an opening tag should be closed
and discards superfluous closing tags. The postprocessor
will again issue warnings to indicate that auto-correction
has taken place and that the user might want to review the
corrections.

We also check for legal usage of empty-only XML ele-
ments. If in postprocessing we encounter an XML opening
element, that can only appear as empty element (e.g.
)
but was written as non-empty opening tag (e.g.
), we
automatically convert it into an empty XML element.

Finally, when correcting erroneous nesting of inline for-
matting elements, we propagate their effect into scopes. This
is done for bold and italics but also for HTML formatting
elements like <u>. Consider the following Wikitext:

...’’italic [[target|still italic’’...]]...

The opening apostrophes for italic formatting are opened in
front of a link but closed inside the link’s title. Since italics
is considered a propagatable inline formatting element, the
respective AST representation will be altered to correspond
to the following Wikitext:

...’’italic ’’[[target|’’still italic’’...]]...

The italics formatting has been closed in front of the link,
before entering the scope of the link title, and has been re-
opened after entering the scope of the link title, thus prop-
agating the effect into the scope of the link title and at the
same time restoring correct nesting. This way we account
for the nesting correction done either by an HTML tidying
step or the browser.

5. LIMITATIONS
Although we believe that we have solved all hard problems

of parsing Wikitext, there are limitations to our approach.
So far we have no means of automatically comparing the re-
sults our parser produces with the results of the original Me-
diaWiki parser. Generation of HTML is a not only a ques-
tion of parsing but also requires a complete (Media-)wiki
engine that provides the parser functions, parser variables,
tag extensions, templates, etc. In short, the whole context
in which a page is rendered. Since we have not implemented
such an engine yet, one would at least need a smart compar-
ison algorithm that disregards differences in the output that
do not stem from misinterpretation of the original Wikitext.
As a consequence, we manually compare our results using a
set of Wikipedia pages that span a variety of features (com-
plicated tables, complex pages, random pages, most visited
pages).

The complexity of the original parser makes it difficult
to predict how a certain input will be interpreted. This of
course also makes it difficult to judge whether a given alter-
native parser is complete, which also applies to our parser.
Though our parser interprets most of the pages we have
tested correctly, there are still pages, whose AST interpreta-
tion will not match with what one expects given the HTML
rendered by the MediaWiki parser for the same page. There-
fore, development of our parser is not finished. However, we
don’t expect major changes to be necessary to correct pars-
ing errors that will be discovered in the future.

As explained earlier there are also cases where we deliber-
ately chose not to reproduce the exact behavior of the orig-
inal parser. When dealing with wrong nesting, we repair or
discard wrongly nested elements. Though we tried to stay
faithful to the behavior of the original parser together with
an HTML tidying step or the browser’s rendering engine,
we do get different results in some cases. By issuing warn-
ings whenever possible we inform the user that the original
meaning of the Wikitext might not have been preserved ex-
actly.

80

6. CONCLUSIONS
Accurate parsing into an intermediate format like an AST

is a prerequisite to reliably access the data stored in wikis.
In this paper we have presented an implementation scheme
applicable to parsers for wiki markup languages similar to
that of MediaWiki.
Still the development of such a parser remains an ex-

ploratory task for a parser as complex as the MediaWiki
parser. As a consequence, such a replacement parser will
not interpret the input exactly like the original parser. How-
ever, we have shown, that with the techniques presented in
this paper it is possible to closely approximate the behavior
of the original parser and still obtain a machine-accessible
higher-level representation of a page’s content. Where we
cannot adhere to the behavior of the original parser we is-
sue warnings. Yet the cases in which we diverge are rare
corner cases.
Writing a parser like the one presented in this work en-

ables a wiki software to re-engineer its wiki markup syntax.
Though implementing a proper parser is no easy task, once a
clean intermediate representation of a wiki is available, the
content of the wiki can be translated into arbitrary other
formats, including a re-engineered wiki markup, which can
then be parsed by a simpler parser.
Future work will focus on the translation of the AST into

a similar data structure that focuses on the semantic con-
tent and is detached from the syntactic idiosyncrasies of Me-
diaWiki’s markup. Analogous to HTML’s Document Ob-
ject Model, we call this concept Wikitext Object Model [5]
(WOM).
The parser, its grammar and the visitors are available as

open source from http://sweble.org.

7. ACKNOWLEDGEMENTS
We would like to thank Carsten Kolassa, Michel Salim

and Ronald Veldema for their help and support.

8. REFERENCES
[1] AboutUs.org. kiwi - Yet Another Peg WikiText

Parser, (accessed March 27, 2011).
https://github.com/aboutus/kiwi/.

[2] C. Sauer, C. Smith (editors). Wiki Creole, 2007
(accessed March 23, 2011). http://wikicreole.org.

[3] C. Sauer, C. Smith (editors). Wiki Creole 1.0, 2007
(accessed March 23, 2011).
http://wikicreole.org/wiki/Creole1.0.

[4] dbpedia.org. DBpedia, (accessed March 27, 2011).
http://dbpedia.org/.

[5] H. Dohrn and D. Riehle. Wom: An object model for
wikitext. Technical Report CS-2011-05, University of
Erlangen, Dept. of Computer Science, July 2011.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman, Amsterdam,
1994.

[7] B. Ford. Parsing expression grammars: a
recognition-based syntactic foundation. In Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’04,
pages 111–122, New York, NY, USA, 2004. ACM.

[8] R. Grimm. Better extensibility through modular
syntax. In Proceedings of the 2006 ACM SIGPLAN

conference on Programming language design and
implementation, PLDI ’06, pages 38–51, New York,
NY, USA, 2006. ACM.

[9] R. Grimm. Rats! — An Easily Extensible Parser
Generator, (accessed March 1, 2011).
http://cs.nyu.edu/rgrimm/xtc/rats.html.

[10] JFlex.de. JFlex – The Fast Scanner Generator for
Java, (accessed March 1, 2011). http://jflex.de/.

[11] M. Junghans, D. Riehle, R. Gurram, M. Kaiser,
M. Lopes, and U. Yalcinalp. An ebnf grammar for wiki
creole 1.0. SIGWEB Newsl., 2007, December 2007.

[12] M. Junghans, D. Riehle, R. Gurram, M. Kaiser,
M. Lopes, and U. Yalcinalp. A grammar for
standardized wiki markup. In Proceedings of the 4th
International Symposium on Wikis, WikiSym ’08,
pages 21:1–21:8, New York, NY, USA, 2008. ACM.

[13] M. Junghans, D. Riehle, and U. Yalcinalp. An xml
interchange format for wiki creole 1.0. SIGWEB
Newsl., 2007, December 2007.

[14] T. Nelson. Literary machines. Mindful Press,
Sausalito, 1981.

[15] R. R. Redziejowski. Parsing expression grammar as a
primitive recursive-descent parser with backtracking.
Fundam. Inf., 79:513–524, August 2007.

[16] S. Schaffert. IkeWiki: A Semantic Wiki for
Collaborative Knowledge Management. In WETICE
’06: Proceedings of the 15th IEEE International
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 388–396,
Washington, DC, USA, 2006. IEEE Computer Society.

[17] S. Schmitz. Modular syntax demands verification.

Technical report, LABORATOIRE I3S, UNIVERSITÉ
DE NICE - SOPHIA ANTIPOLIS, 2006.

[18] The Apache Software Foundation. Commons JXPath,
(accessed March 27, 2011).
http://commons.apache.org/jxpath/.

[19] The Unicode Consortium. The Unicode Standard,
Version 5.0.0. Addison-Wesley, Boston, 2007.

[20] Usemod.com. UseModWiki, (accessed Febuary 28,
2011). http://www.usemod.com/cgi-bin/wiki.pl.

[21] Various authors. Alternative parsers for Mediawiki,
(accessed March 27, 2011).
http://www.mediawiki.org/wiki/Alternative parsers.

[22] Various authors. Help:Formatting, (accessed March 27,
2011).
http://www.mediawiki.org/wiki/Help:Formatting.

[23] Various authors. Markup spec, (accessed March 27,
2011). http://www.mediawiki.org/wiki/Markup spec.

[24] Various authors. MediaWiki history, (accessed March
27, 2011).
http://www.mediawiki.org/wiki/MediaWiki history.

[25] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. In Proceedings of the
15th international conference on World Wide Web,
WWW ’06, pages 585–594, New York, NY, USA,
2006. ACM.

[26] M. Völkel and E. Oren. Towards a wiki interchange
format (wif). In M. Völkel and S. Schaffert, editors,
Proceedings of the First Workshop on Semantic Wikis
– From Wiki To Semantics, 2006.

[27] W3C. XML Path Language, (accessed March 27,
2011). http://www.w3.org/TR/xpath/.

81

